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Abstract
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high social mobility: when the median voter expects to move up (respectively down), she would prefer to give
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of social mobility, the political preferences of an individual depend on the potentially conflicting preferences
of her “future selves,”and that the evolution of institutions is determined through the implicit interaction
between occupants of the same social niche at different points in time. When social mobility is endogenized,
our model identifies new political economic forces limiting the amount of mobility in society – because the
middle class will lose out from mobility at the bottom and because a peripheral coalition between the rich
and the poor may oppose mobility at the top.
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1 Introduction

An idea going back at least to Alexis De Tocqueville (1835) relates the emergence of a stable demo-

cratic system to an economic structure with relatively high rates of social mobility. De Tocqueville,

for example, argued:

“In the midst of the continual movement which agitates a democratic community,

the tie which unites one generation to another is relaxed or broken; every man readily

loses the tract of the ideas of his forefathers or takes no care about them. Nor can men

living in this state of society derive their belief from the opinions of the class to which

they belong, for, so to speak, there are no longer any classes, or those which still exist

are composed of such mobile elements, that their body can never exercise a real control

over its members.”(De Tocqueville, 1835-40 [1862], Book 2, pp. 120-121).

Lipset (1992) summarizes and further elaborates De Tocqueville’s hypothesis as follows:

“In describing ‘The Social Conditions of the Anglo-Americans’in the Democracy in

America Tocqueville concluded that the institutionalization of widespread individual

social mobility, upward and downward, has ‘political consequences’, the stabilization of

the democratic order.”

Many commentators have continued to view social mobility as a vital factor for the health

of American democracy. While Lipset and Bendix (1959) deem it to be “a critical, if not the

most important, ingredient of the American democracy,”Blau and Duncan’s seminal (1967) study

concluded “the stability of American democracy is undoubtedly related to the superior chances of

the upward mobility in this country”(similar ideas also appear in Pareto, 1935, Barrington Moore,

1966, Sombart, 1906, and Erikson and Goldthorpe, 1992). This perspective suggests that a greater

social mobility, caused for example by improvements in the educational system, the dismemberment

of barriers against occupational mobility, or technological changes, may improve the prospects of

democracy’s survival and flourishing.

Despite its ubiquity in modern debates on democracy and in modern social theories, there has

been little systematic formalization or critical investigation of this idea. The next example illustrates

not only why this idea is intuitive, but also why greater social mobility may actually destabilize

democracy.

Example 1 Consider a society with n individuals, with 2
5n, or 40 percent of them, rich,

1
5n or 20

percent, middle class, and 2
5n or 40 percent poor. There are three possible political institutions:

democracy, where decisions are made by the median voter who is a member of the middle class;

left dictatorship, where all political decisions are made by the poor; and elite dictatorship, where
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all political decisions are made by the rich. Suppose that the economy lasts for two periods, and

in each period, society adopts a single policy, pt. There is no discounting between the two periods.

All agents have stage payoffs given by −(pt − bi)
2, where political bliss points, bi, for the poor,

middle-class, and rich social groups are, respectively, −1, 0, and 1. Society starts out with one of

the three political institutions described above, and in the first period, a member of the politically

decisive social group decides both the current policy and the political institution for the second

period. Then, in the second period, the group in power chooses policy.

Suppose we start with elite dictatorship. Without social mobility, the politically-decisive rich

prefer to keep their dictatorship so as to be able to set the policy in the second period as well.1

Suppose, instead, that there is very high social mobility, involving complete reshuffl ing of all in-

dividuals across the three social groups. (At the time decisions are made, what will happen to

a given individual is not known, so there is no asymmetry of information or conflict of interest

within a group.) If so, a rich individual expects to be part of the rich, the middle class, and the

poor with probabilities 2/5, 1/5, and 2/5, respectively. His second-period expected utility is then

−2
5 (p2 + 1)2 − 1

5p
2
2 − 2

5 (p2 − 1)2 = −p2
2 − 4

5 . Thus, he prefers, in expectation, p2 = 0. To achieve

this, he would like next period’s political institutions to be democratic.

The same example can also be used to highlight the opposite political forces in play.

Example 1 (continued) Consider now a different pattern of social mobility: r middle-class

agents become rich and r rich agents move down to the middle class between periods 1 and 2. Let

α = 5r
n denote the share of the middle class that moves upwards. Suppose that the society starts

out as a democracy. Then, if suffi ciently many members of the middle class move upwards (i.e., if

α > 1/2), the middle-class agents expect, on average, to have the preferences of the rich tomorrow,

and hence prefer policy tomorrow to be determined in elite dictatorship, making democracy unstable.

This example thus provides a simple (and as we will see, robust) reason why greater social

mobility may undermine the stability of democracy: if social mobility means that members of the

politically pivotal middle class expect to change their preferences in a certain direction, they will

have an incentive to change the political institutions in that direction as well.2

Differently from this example, our main model will consider an infinite-horizon setting. This is for

three reasons. First, in a two-period model, if the current decision-makers could set policies for the

next period (as in Benabou and Ok’s, 2001, analysis of the relationship between social mobility and

1Throughout the paper, when all current members of a social group have the same preferences, we will interchange-
ably refer to a member of that social group or the entire social group.

2The fact that the social mobility in this example makes middle-class agents more likely to move upwards rather
than downwards is important, as we will see in our analysis. If they expected to move upwards or downwards
symmetrically, then they would continue to prefer democracy to other political regimes because they would lose in
expectation even more from elite (or left) dictatorship than they would gain.
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redistribution), then there would be no need for institutional changes. Second, such a model also pre-

cludes any effect of future social mobility on preferences, e.g., from the fact that middle-class agents

may not only move up to the next social group in the next period, but move yet further up or even

possibly down in subsequent periods. Third and relatedly, we will see that beyond the two-period set-

ting what matters for the political equilibrium is not simply mobility next period, but the interplay

of the evolution of the preferences of an agent’s ‘future selves’(because of evolving social mobility)

and expectations about future institutions. This last feature is illustrated in the next example.3

Example 2 Consider the same setting as in Example 1, but now each agent maximizes her dis-

counted utility over an infinite number of periods, and we take the discount rate to be β = 4/5.

In each period, the current decision-maker determines next period’s institution, and in-between, r

people move upwards from the middle class, and r rich agents move downwards. Let α = 5r
n again

denote the share of the middle class moving upwards.

In left dictatorship, the poor, who are not upwardly mobile, would maintain this political insti-

tution forever, and choose pt = −1 (their political bliss point) at all t. In elite dictatorship, the rich

also have no incentive to change the political institutions. Middle-class preferences, on the other

hand, depend on their expectations of future institutions and of how future middle-class agents will

behave. Suppose that 1/4 < α < 1/2. Then a middle-class individual prefers her group to remain

in power in the next period, but the rich to be in power after a few periods. (In the long run, the

current middle-class expect to be rich 2/3 of the time and remain in the middle class 1/3 of the

time.) Consequently, when today’s middle class expects a transition to elite dictatorship tomor-

row, it prefers to remain in democracy, and when it expects the survival of democracy, it prefers

an immediate transition the dictatorship. This logic not only illustrates the interplay between the

preferences and strategies of current and future ‘selves’but also shows that there is no pure-strategy

Markovian equilibrium in this case because of this same interplay.

Our baseline framework corresponds to a straightforward generalization of the setup discussed

in this example. Society consists of a finite number of social groups, each of which comprises a

finite number of identical individuals. Individuals (and thus groups) are ordered with respect to

their policy preferences. Social mobility results from well-defined stationary probabilities specifying

how each individual transitions from one social group to another. There is a finite set of alternative
3This example and our analysis below highlight the importance of two kinds of conflicts of interest: between

agents from different social groups; and between today’s decision-maker and future decision-makers who will occupy
in the future the same social group as the current decision-maker. The latter conflict arises from the fact that
today’s decision-maker anticipates being in different social class in the future. This conflict is not only essential for
understanding the political implications of social mobility, but also highlights a new trade-off in dynamic political
economy models: without social mobility, changing institutions entails delegating future political power to agents with
different preferences, whereas with social mobility, even with unchanged institutions, future political power will be
effectively delegated to agents with different preferences. It is also related to the conflict between the different ‘selves’
of an individual (or more appropriately, of individuals who belong to the same social class in future dates), and yet
its origins are not in time-inconsistent preferences, but in social mobility.
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political institutions, which we refer to as ‘states’, and each state is represented by a set of weights

assigned to individuals within each social group. These weights determine the distribution of po-

litical power and the identity of the pivotal voter who chooses the current policy as well as next

period’s political state (which is equivalent to choosing next period’s pivotal voter).

Our main results are of two sorts. First, we establish the existence and certain basic properties

of Markov Perfect Equilibria in this economy. We focus on equilibria that are “monotone,”which

have the property that the equilibrium path starting from a state is always to the further right

in the sense of first-order stochastic dominance relative to the equilibrium path starting from

another state to the left. Though, as Example 2 suggests, pure-strategy equilibria may fail to

exist, we demonstrate that mixing takes a particularly simple form: (generically) there is mixing

only between keeping the current institution and transiting to a uniquely defined alternative.

This property implies, in particular, that the equilibrium direction of transition is always well

defined. Similarly, the interplay between different selves of the current pivotal voter can lead to

multiple equilibria. Nevertheless, we establish the uniqueness of equilibrium under a simple (even

if somewhat demanding) within-person monotonicity condition, which requires that the preferences

of the future selves of an individual evolve monotonically. Specifically, this condition requires that

as we consider selves further away from the present, preferences will either gradually shift to the

left or to the right, and thus enable consistent aggregation of the preferences of future selves.

Second, we provide a comprehensive analysis of the relationship between social mobility and

the stability of democracy. We quantify the stability of democracy with the size of its basin of

attraction along the equilibrium path. Hence, we say that democracy is more stable under social

mobility process M than M ′ if it is stable under M whenever it is stable under M ′, and moreover,

it is asymptotically stable under M whenever it is asymptotically stable under M ′.4 Example 1

provides an illustration of how social mobility may make democracy unstable – even starting in

democracy, society will not stay there. Our main results, presented in Theorems 4 and 5, state

that if the preferences of the median voter in democracy in the very distant future are close to her

current preferences, then greater social mobility makes democracy more stable; otherwise, greater

social mobility makes democracy less stable. When there is mobility between all social groups

(so that the unique irreducible component of the social mobility process is the entire society), the

condition on the preferences of the median voter takes an even more intuitive form: it requires the

preferences of the median of the society to be close to the average of the preferences of all voters.

Our paper is most closely related to the small literature on the interplay between social mobil-

ity and redistribution. The important paper by Benabou and Ok (2001), which has already been

4This notion of stability thus captures both the potential instability of democracy resulting from the median voter
preferring other political institutions to democracy, and other, neighboring social groups wishing to keep society away
from democracy (which would be relevant if society started in nondemocracy, or if political power randomly shifted
to these groups or enabled them to mount actions against democracy).

4



mentioned, shows how greater social mobility (or expectations thereof) discourages redistributive

taxation (see also Wright, 1986, for a similar argument in the context of unemployment benefits, and

Piketty, 1995, for a related point in a model in which agents learn from their dynasties’experience

about the extent of social mobility). The key economic mechanism in Benabou and Ok is linked to

De Tocqueville’s hypothesis – greater mobility makes the middle class less willing to tax the rich be-

cause they expect to become rich in the future. They generate this effect by assuming that taxes are

‘sticky’(i.e., there is some commitment to future taxes). In Benabou and Tirole (2006), beliefs about

future social mobility support different equilibria – e.g., ‘the American dream’equilibrium, in which

high level of efforts stems from the belief in high social mobility (see also Alesina and Glaeser, 2004,

and Alesina and Giuliano, 2010). Nevertheless, this literature does not consider the relationship

between social mobility and support for different types of political institutions. More importantly,

it neither incorporates the dynamic political trade-offs that are at the heart of our paper nor does

it feature the potentially destabilizing role of social mobility for democracy. Notably, Leventoglu

(2005) investigates the link between social mobility and democracy in a world with three social

groups, but only obtains the stabilizing role of social mobility due to various special assumptions.

Our modeling approach overlaps with dynamic political economy models studying democrati-

zation, constitutional change, repression and the effi ciency of long-run institutional arrangements,

including Besley and Coate (1998), Bourguignon and Verdier (2000), Acemoglu and Robinson (2000

and 2001), Lizzeri and Persico (2004), Gomes and Jehiel (2005), Lagunoff (2006), Acemoglu, Egorov,

and Sonin (2010, 2015), and Roberts (2015), though again none of this literature studies social mo-

bility and the mechanisms that are at the heart of our paper.

Finally, the role of the implicit conflict between the current self and the future selves of the pivotal

voter relates to a handful of papers considering time-inconsistency of collective or political decisions,

most notably, Amador (2003), Gul and Pesendorfer (2004), Strulovici (2010), Bisin, Lizzeri, and

Yariv (2015), Jackson and Yariv (2015) and Cao and Werning (2016), though none of these works

note the conflict between current and future selves resulting from social mobility or study the

implications of this type of conflict for institutional change.

The rest of the paper is organized as follows. In Section 2 we introduce our setup. Section 3 solves

the model and establishes existence of an equilibrium, provides conditions for uniqueness, and studies

its main properties. Section 4 contains our main results linking the speed of social mobility to the sta-

bility of democracy. Section 5 contains two sets of further results: first, we show how social mobility

changes the nature of slippery slopes in dynamic political economy (whereby political changes that

are beneficial in the short run are forsaken because of their medium-run or long-run consequences);

and second, we generalize our main results to environments with multiple equilibria. Section 6 endo-

genizes social mobility and studies how, in a simplified version of our baseline model, concerns about

changes in future social mobility constrain equilibrium mobility decisions. Section 7 concludes. Ap-
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pendix A contains the proofs of the main results presented in the text, while Appendix B, which is

not for publication, includes the remaining proofs, several additional examples and further results.

2 Model

In this section, we introduce our basic model and our notion of equilibrium.

2.1 Society, policies and preferences

Time is discrete and infinite, indexed by t ≥ 1. Society consists of n individuals split into g social

groups, G = {1, ..., g} with each group k, 1 ≤ k ≤ g, comprising nk > 0 agents (so
∑g

k=1 nk = n).

The groups are ordered, and the order reflects their “economic” preferences (e.g., lower-indexed

groups could be those that are richer and prefer lower taxes). All individuals share a common

discount factor β ∈ (0, 1).

Preferences are defined over a policy space represented by the real line, R. We assume that
individuals in each group have stage payoffs represented by the following quadratic function of the

distance between current policy and their bliss point:

uk (pt) = Ak − (bk − pt)2 , (1)

where pt is the policy at time t, bk is the (political) bliss point of agents in group k, and Ak is an

arbitrary constant, allowing for the possibility that some groups are better off than others (e.g.,

because they are richer).5 In what follows, b = {bk} will denote the column vector of political bliss
points. We assume that each bk is different from the others, and order the groups so that {bk} is
(strictly) increasing.

Decision-making power depends on the current political state; in each period society makes

decisions both on the current policy pt ∈ R and on the next period’s arrangement. We assume that
there are m (political) states s ∈ S = {1, . . . ,m}, which encapsulate the distribution of political
power in society. In state s, individuals in group k are given weights wk (s), and political decisions

are made by weighted majority voting as we specify below (this could be a reduced form for a

political process involving legislative bargaining or explicit partial or full exclusion of some groups

from voting via legislation or repression).

We also assume that
∑j

k=1wk (s) nkn 6=
1
2 for all s ∈ S and all j ∈ G. This is a mild assumption

adopted for technical convenience and holds generically within the class of weights. It ensures

the pivotal group in each state s – namely, the group ds such that
∑ds

k=1wk (s) nkn ≥
1
2 and∑g

k=ds
wk (s) nkn ≥

1
2 – is uniquely defined. Since, for our purposes, two states that have the same

5For example, if all Ak = 0, then members of the middle class might not want to become rich if the political
institution is democracy, because this may hurt policy payoff. This is inconsequential when social mobility is exogenous,
but would lead to unrealistic predictions once we endogenize social mobility.
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pivotal group are equivalent, we can without loss of any generality assume that each state has a

different pivotal group, so {ds}s∈S are all different. We can then order states such that the sequence
of pivotal groups, {ds}, is increasing.

2.2 Social mobility

We model social mobility by assuming that individuals can change their social group – corre-

sponding to a change in their economic or social conditions and thus their preferences. This can be

interpreted either as an individual becoming richer or poorer over time, or as the her offspring mov-

ing to a different social group than herself (and the individual herself having dynastic preferences).

Throughout we assume that, though there is social mobility, the aggregate distribution of popu-

lation across different social groups is stationary. Since social mobility is treated as exogenous here,

this assumption amounts to supposing that there exists a stationary aggregate distribution and that

we start the analysis once society has reached this stationary distribution.6

Formally, we represent social mobility using a g×g matrixM =
{
µjk
}
, where µjk ∈ [0, 1] denotes

the probability that an individual from group j moves to group k, with the natural restrictions:
g∑

k=1

µjk = 1 for all j, and (2)

g∑
j=1

njµjk = nk for all k, (3)

where the latter condition imposes the stationarity assumption requiring that the sizes of different

groups remain constant. Since there is no within-group heterogeneity, the stochastic process for

social mobility is the same for each individual within the same social group.7 Throughout the

paper, we also impose the following assumption:

Assumption 1 (Between-Person Monotonicity) For two groups j1 and j2 with j1 < j2, mar-

ginal probability distribution
{
µj1·
}
over G is first-order stochastically dominated by

{
µj2·
}
. For-

mally, for any l ∈ {1, . . . , g},
l∑

k=1

µj1k >

l∑
k=1

µj2k. (4)

6This assumption is both technical and substantive. Technically, it enables Markovian strategies to be ‘stationary’:
if the aggregate distribution of population changed over time, it would have to be part of the payoff-relevant state
variable, and the restriction to Markovian strategies would have little bite. Substantively, it enables us to focus on
social mobility rather than the implications of changes in the social structure of society, which would be continuously
ongoing if the aggregate distribution of population across social groups did not remain constant.

7Matrix M can be equivalently defined by using permutations π ∈ SN of individuals and assuming that in each
period, Nature changes identities of individuals according to π with probability λπ, such that

∑
π∈SN λπ = 1. The

symmetry requirement then becomes λπ = λσ◦π◦τ for any σ, τ ∈ SN that reshuffl e individuals within groups only. In
this case, denoting the set of individuals in group j by Gj , we have µjk =

1
nj

∑
i∈Gj

∑
π∈SN :π(i)∈Gk λπ. The converse is

also true: for any matrix M =
{
µjk
}
of nonnegative elements satisfying (2)—(3), there is a corresponding distribution

λ over permutations π (this distribution may be not uniquely defined). This relatively minor generalization of the
Birkhoff-von Neumann theorem for doubly stochastic matrices is proved in Lemma B2 in Appendix B.
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This assumption, which is quite weak, imposes that the distribution of a richer individual’s

future selves first-order stochastically dominates the distribution of the poorer individual’s future

selves. In essence, it rules out ‘deterministic reversals of fortune’, where poorer people become (in

expectation) richer than the currently richer individuals. We impose Assumption 1 in all of our

analysis without explicitly stating it.8 We next provide an example of a class of social mobility

matrices satisfying this assumption.

Example 3 Let I be the identity matrix, so that M = I corresponds to a society with no social

mobility. Let F be the matrix with elements µjk = nk
n ; it corresponds to full (and immediate) social

mobility, as the probability of an individual becoming part of group k is proportional to the size

of this group and does not depend on the identity of the original group j. Then for any λ ∈ (0, 1],

λI + (1− λ)F is a matrix of social mobility satisfying Assumption 1.

Throughout the rest of the paper, we use the standard notation M τ to denote the τth power of

the social mobility matrix M , and use µτjk to denote its generic element. The element µ
τ
jk of this

matrix gives the probability that an individual currently in social group j will be in social group k

in τ periods time.

2.3 Timing of events

To specify how political decisions are made, we assume that there is a fixed order of groups in each

state, πs : {1, ..., g} → G, which determines the sequence in which (representatives of) different

groups make proposals, and that group ds is included among the proposers in state s (which is

trivially satisfied if all groups have the opportunity to make proposals in each state).

The first period’s state s1 is exogenously given, and so is some default policy, p0, in the first

period. Thereafter, denoting the group that individual i belongs to at time t by gti , the timing in

each period t ≥ 1 is as follows.

1. Policy decision:

(a) In each state st, we start with j = 1 and the default option of preserving the previous

period’s policy, p0
t = pt−1.

(b) A random agent i from group πst (j) is chosen as the agenda setter and makes an amend-

ment (policy proposal) p̃jt . (Since all members of social groups have the same preferences,

which agent is chosen to do this is immaterial).

8This assumption can be further weakened to have a weak inequality in (4), but the version with strict inequality
simplifies our exposition and proofs. In fact, Example 1 in the Introduction only satisfies this assumption with weak
inequality, but this is also just for simplicity, and having less than full reshuffl ing in that example would not affect
the conclusions.
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(c) All individuals vote, sequentially, with each agent i casting vote vpi (j) ∈ {Y,N}.

(d) If
∑n
i=1 wgt

i
(st)1{vpi (j)=Y }∑n
i=1 wgt

i
(st)

> 1
2 , then the current proposal becomes the default policy (p

j
t =

p̃jt ), otherwise the default policy stays the same (p
j
t = pj−1

t ). The game returns back to

stage 1(b) with j increased by 1, unless j = g.

(e) The policy decided in the last stage is implemented: pt = pgt .

2. Political decision:

(a) In each state st, the default option to preserve the current institution, s0
t+1 = st, is on

the table, and we start with j = 1.

(b) A random agent i from group πst (j) is chosen as the agenda setter and makes an amend-

ment (proposal of political transition), s̃jt+1.

(c) All individuals vote, sequentially, with each individual i casting vote vsi (j) ∈ {Y,N}.

(d) If
∑n
i=1 wgt

i
(st)1{vsi (j)=Y }∑n
i=1 wgt

i
(st)

> 1
2 , then the current proposal becomes the default transition

(sjt+1 = s̃jt+1), otherwise the default transition stays the same (s
j
t+1 = sj−1

t+1 ). The game

returns back to stage 2(b) with j increased by 1, unless j = g.

(e) The transition decided in the last stage is implemented: st+1 = sgt+1.

3. Payoffs: Each individual i receives time-t payoff of ugti (pt), given by (1).

4. Social mobility: At the end of the period, there is social mobility, so that individual i who

belonged to group gti in period t will start period t+ 1 in group k with probability µgtik.

This specific game form, where proposals (for policies or political transitions) within a period

are accepted temporarily and act as a status quo until the whole sequence of proposals are made,

is similar to the “amendments”games discussed in Austen-Smith and Banks (2005).

2.4 Definition of equilibrium

We focus on symmetric monotone Markov Perfect Equilibrium (MPE for short). Symmetry requires

that equilibria involve the same strategies for any individuals in the same social group. Monotonicity

rules out equilibria in which the direction of political transitions is reversed.9 Since, as shown in

Example 2 in the Introduction, pure-strategy equilibria may fail to exist, we allow proposers to mix

between alternatives. Thus, a strategy of player i is a mapping from history (which codifies her

current group affi liation, the current institution, as well as the entire sequence of moves within the

period). This mapping is into R when player i is making a policy proposal, into ∆ (S) when she is

9Example B5 in Appendix B provides an example of a non-monotonic Markov Perfect Equilibrium, but Theorem
B2 provides intuitive suffi cient conditions for all equilibria to be monotone.
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proposing political transition, and into {Y,N} when she is at the voting stage. We next define our
equilibrium concept more formally.

Definition 1 (Symmetric Monotone Markov Perfect Equilibrium) A subgame perfect equi-

librium σ̂ is a Markov Perfect Equilibrium (MPE) if the strategy of each player i, σ̂i, is conditioned

only on player i’s current social group and the current political institutions (in addition to the history

of proposals and votes within the same stage).10

An MPE σ is symmetric if for any two individuals i and j in the same social group k, σi = σj.

An MPE is monotone if for any two states x, y ∈ S such that x ≤ y, the distribution of states in
period τ > t starting with st = x is first-order stochastically dominated by the distribution of states

starting with st = y, i.e., for any l ∈ [1,m],

Pr (sτ ≤ l | st = x) ≥ Pr (sτ ≤ l | st = y) . (5)

In what follows, we refer to symmetric monotone MPE simply as ‘equilibria’. Moreover, although

equilibria formally correspond to a complete list of strategies, it will also be more convenient to work

with the policy choices and the equilibrium transitions (across different political states) induced by

an equilibrium, and not distinguish between equilibria that differ in terms of strategies but have

the same equilibrium transitions.

Finally, we say that a (political) state s is stable, if st = s implies that st+1 = s. We say that

a state s is asymptotically stable if st ∈ {s − 1, s, s + 1} ∩ S implies that limτ→∞ Pr (sτ = s) = 1,

in other words if, starting from one of the neighboring states of s, the sequence of states induced

in equilibrium converges to s with probability 1. This last definition is the analog in discrete state

space of the usual notion of asymptotic stability: starting with a small enough deviation from an

asymptotically stable state, the equilibrium path will approach the initial state arbitrarily closely

with an arbitrarily high probability. For a monotone symmetric MPE, asymptotic stability of a state

implies stability. We also quantify the notion of stability by saying that a state becomes more stable

under a change in parameters if (i) it remains stable whenever it was stable before the change of

parameters, and (ii) it remains asymptotically stable whenever it was asymptotically stable before

the change. The notion of less stable is defined analogously.

3 Analysis

In this section, we prove the existence of equilibrium, present some basic characterization results,

and also provide conditions for uniqueness.

10Since ours is a complete information game, the definition of a subgame perfect equilibrium is standard.
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3.1 Existence and characterization

The next theorem establishes the existence of an equilibrium (symmetric monotone MPE) and shows

that an equilibrium can be represented by a sequence of policies and transitions that take a simple

form, and the preferences of the current pivotal group play a critical role.

Theorem 1 (Existence and characterization) There exists an equilibrium. Moreover, in every

equilibrium:

1. The equilibrium policy coincides with the bliss policy of the current pivotal group at each t.

That is, if the current state at time t is s, then the policy is pt = bds;

2. The next state maximizes the expected continuation utility of current members of the cur-

rent pivotal group. That is, if we define the transition correspondence Q = Q (σ) by

qsz = Pr (st+1 = z | st = s), then qsz > 0 implies

z ∈ arg max
x∈S

∑
j∈G

µdsjVj (x) , (6)

where {Vj (x)}x∈Sj∈G satisfies

Vj (x) = uj (bdx) + β
∑
y∈S

qxy
∑
k∈G

µjkVk (y) ; (7)

3. The transitions induced by the equilibrium are strongly monotonic: if x < y and qxa > 0,

qyb > 0 (i.e., transitions from x to a and from y to b may happen along the equilibrium path),

then a ≤ b;

4. Generically, mixing is only possible between two states, one of which is the current one. Specif-

ically, for almost all parameter values, if qsx > 0 and qsy > 0 for x 6= y, then s ∈ {x, y}.

The first two parts of this proposition imply that, starting in the current state s, the political

process induces a path of policies and transitions that maximizes the discounted utility of the pivotal

group, ds.11 Note that this maximization naturally takes into account that the current pivotal group

may not be pivotal in the future. This feature of our (monotone) equilibria will greatly simplify the

rest of the analysis, and we will often work with the preferences of the current pivotal group (or

with a slight abuse of terminology, the ‘current decision-maker’).

Part 3 establishes that (stochastic) equilibrium transitions are strongly monotonic, meaning that

transitions that have positive probability starting from a higher state will never fall below transitions

that have positive probability starting from a lower state. This property implies that if a transition

11There is an analogous result in Roberts (2015) in a non-strategic environment (and without social mobility), and
also in Acemoglu, Egorov and Sonin (2015) in a setting without social mobility.
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from x to a is possible in equilibrium, then from y > x, only transitions to states a, a + 1, . . . are

possible. Notice that, as the qualifier ‘strongly’suggests, this result significantly strengthens the

monotonicity requirement of our symmetric monotone MPE, which only required first-order stochas-

tic dominance of the equilibrium path when starting from a higher state. The result here instead

establishes that when we start in a higher state, the lowest state to which there can be a transition

is higher than the highest state to which there can be a transition starting from a lower state.

Finally, Part 4 will greatly simplify our subsequent analysis. It establishes that equilibria in

mixed strategies take a simple and intuitive form: they involve mixing only between the current

state and some other state. Mixed strategies arise as a way of slowing down the transition from

today’s state to some unique ‘target’state. This is intuitive; as Example 2 illustrated, pure-strategy

equilibria may fail to exist because the current decision-maker would like to stay in the current

state if he expects the next decision-maker to move away, and would like to move if he expects

the next decision-maker to stay. This was a reflection of the fact that the current decision-maker

prefers the current state but would like to be in a different state because he expects his preferences

to change in the near future as a result of social mobility. Mixed strategies resolve this problem

by slowing down transitions: when she expects the next decision-maker to slowly move away

(i.e., move away with some probability), the current decision-maker is indifferent between moving

towards her target state and staying put. This intuition also clarifies why, generically, there is

only mixing between two states: the current decision-maker can be indifferent between three states

only with non-generic preferences/probabilities.12 The notion of genericity here is essentially that

the set of parameter values for which the statement is not true is of measure zero (because it

requires the decision-maker to be exactly indifferent between three states).13 One implication of

this characterization is that even though there may be mixed strategies, this will not change the

direction of transitions, but will just affect its speed.

Note also that the expected stage utility of an agent currently in group j in τ periods if policy

p were to be implemented at that point is

g∑
k=1

µτjk

(
Ak − (bk − p)2

)
= −

(
g∑

k=1

µτjkbk − p
)2

+

(
g∑

k=1

µτjkbk

)2

+

g∑
k=1

µτjk
(
Ak − b2k

)
,

12Mixing can take place between two non-neighboring states because the continuation utility of the current decision-
makers may be maximized at two non-neighboring states. Though this might at first appear to contradict the concavity
of utility functions, Example B3 in Appendix B demonstrates that it may take place as a result of the conflict between
near and distant future selves (in particular, near selves prefer to stay in the current state, while distant ones prefer
to move to states farther away and rapidly, and at the same time, moving to a neighboring state makes none of the
selves happy).
13More formally, the genericity notion requires that the parameters, β, the µ’s and the b’s, to be such that no subset

of them are roots of a (nontrivial) polynomial with rational coeffi cients (since the value functions will be shown to be
polynomial with rational coeffi cients in these parameters, see the proof of Theorem 1 in Appendix A). As there is a
countable set of such polynomials, each of which defines a set of (Lebesgue) measure zero, the union of such points has
measure zero as well. This substantiates the claim that the statements that are true generically in this and subsequent
propositions hold for all parameters except a subset that is of measure zero.
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where µτjk denotes the jkth element of M
τ , the τth power of the mobility matrix M . The last two

terms in this expression are constants (reflecting, after rearranging, the expectation of Ak and the

variance of bk). This implies that policy preferences can be equivalently represented by the square

of the distance between the policy and the political bliss point of the self in τ periods given by

b
(τ)
j =

g∑
k=1

µτjkbk = (M τb)j .

Let us also define b(0)
j = bj and b

(∞)
j = limτ→∞ (M τb)j (this limit exists by standard properties of

stochastic matrices).

Some of our results – specifically, the ones dealing with β close to 1 – are easiest to formulate

under the following assumption. We will specifically note when we impose this assumption.

Assumption 2 (Suffi ciently rich set of states) For each group j ∈ G, if state sj ∈
arg mins∈S |bds − bj |, then µ

(τ)
jdsj

> 0 for some τ > 0.

This assumption states that every social group has a positive probability of becoming pivotal

starting in its ideal state (i.e., the state with induced policy choice maximizing the stage payoff

of individuals in this social group). This assumption is not particularly restrictive as it holds

automatically either if for each group there is a state in which it is pivotal (i.e., S = G), or if the

social mobility matrixM is ‘ergodic’(meaning that there is a positive probability that an individual

from any social group can eventually reach any other social group).

Theorem 2 (Very myopic or very patient players)

1. There exists β0 > 0 such that for any β ∈ (0, β0), the equilibrium is such that if in period t the

state is s, then the state in period t+ 1 is z ∈ S that minimizes
∣∣∣bdz − b(1)

ds

∣∣∣. In other words, if
agents are suffi ciently myopic, then society immediately moves to a state where the resulting

policy is closest to the bliss point of tomorrow’s self of the current pivotal group, b(1)
ds
.

2. Suppose in addition that Assumption 2 holds. There exists β̃ < 1 such that for any β ∈ (β̃, 1)

there is an equilibrium such that if in period t the state is s, then the sequence of states along

the equilibrium path st+1, st+2, . . . will converge, with probability 1, to state z that minimizes∣∣∣bdz − b(∞)
ds

∣∣∣.
The first result is straightforward: suffi ciently myopic players in the pivotal group will choose

the political institution that maximizes the welfare of their immediate future selves. In fact, in this

case, it can also be shown that the equilibrium is generically in pure strategies (where genericity is

to rule out the cases in which tomorrow’s ideal point is exactly half way between the policies that

will follow from two adjacent states).
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The second result is more subtle and already starts illustrating some of the reasoning that will

play an important role in the rest of our analysis: if β is high, agents are patient and are willing to

act in a way that will eventually lead to a state where the utilities of their distant future selves are

maximized. Thus, if the equilibrium evolution did not take society to such a state, then the current

decision-maker would have an incentive to move there immediately. Intuitively, when the discount

factor is suffi ciently large, agents care about the preferences of their current and near-future selves

only inasmuch as this does not conflict with the preferences of their distant future selves. To com-

plete the argument, one needs to show that the state z that minimizes
∣∣∣bdz − b(∞)

ds

∣∣∣ is stable, so once
the society gets there, it stays there forever. Though the mathematical argument is more involved,

the intuition for this result is straightforward: in the long run, the distributions of future selves of

individuals from groups ds and dz are the same, and therefore their interests are aligned. So decision-

makers from group dz prefer to maintain state z, which is exactly what group ds, from the vantage

point of the beginning of the game, wishes to achieve in the long run. Notice also that Theorem 2

does not imply immediate transition to the long-run stable state even when β is very close to 1 be-

cause current decision-makers might still prefer to spend the next several periods in the current state.

3.2 Multiplicity and Uniqueness

The same economic forces that lead to equilibria in mixed strategies also open the way to multiplicity

as the next example demonstrates. The key feature of the example, responsible for multiplicity, is

the presence of different aspects of social mobility that take place at different speeds. In the next

example, there is ‘fast social mobility,’meaning a high likelihood of the members of the middle class

to move up, which will make them have preferences similar to the rich in the near future, but also

‘slow social mobility,’meaning a lower but still positive probability for them to move down, which

implies that their preferences in the very far future will coincide with those of the current poor.

Example 4 Consider an environment as in Example 2, but with the following changes: first, the

discount factor, β, can take any value; and second, in each period, r members of the middle class

become rich and an equal number of rich become middle class, while also r′ other members of the

middle class become poor, while an equal number of poor become middle class. Assume that r = 1
8n

and r′ = 1
50n (where n is any number divisible by 200). Notably, r is much larger than r′, which will

imply that for the middle class, mobility upwards is considerably faster than mobility downwards,

though because they are part mixing with the middle class and the poor have the same preferences

in the very distant future.

Current members of the middle class prefer policy 0 today, but for tomorrow, their bliss point

is given by 5
8 × 1 + 1

10 × (−1) = 21
40 . Consequently, these individuals would prefer the rich to rule in

the next period, which is a consequence of the fast mobility upwards. But in subsequent periods,

because of slow mobility downwards, they again prefer democracy: for example, in the period after
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next, their bliss point is
(

5
8 ×

11
16 + 11

40 ×
5
8

)
× 1 +

(
1
10 ×

19
20 + 11

40 ×
1
10

)
× (−1) = 1533

3200 <
1
2 . In fact,

thereafter their bliss points decline monotonically towards zero, which is the bliss point of the very

distant future self of all agents (computed as the weighted average of the bliss points of different

social groups in the stationary distribution).

It can be verified that for β > 0.373, there is an equilibrium in which democracy is stable. In

this equilibrium, the middle class can resist the temptation to transfer power to the rich, because

this would be beneficial for only one period, and when β > 0.373, this is not suffi cient to compensate

for the lower utility thereafter. At the same time, for all β ∈ (0, 1), and thus a fortiori for β >

0.373, there is an equilibrium in which democracy is unstable, and where the society immediately

transitions to elite dictatorship and stays there forever. Intuitively, when the transition to elite

dictatorship tomorrow is expected, the current middle class know that their transition decision

affects the utility of their tomorrow’s selves, but not the utility of their more distant selves, who

will find themselves in elite dictatorship even if the middle class stays in democracy for the next

period. Since only the utility of tomorrow’s self is at stake, and this self prefers elite dictatorship

to democracy, moving away from democracy is indeed a best response by the middle class. (In

addition, when β > 0.373, there is also a third equilibrium involving mixing).

Notice that the multiplicity illustrated in this example is not just a multiplicity of equilibrium

strategies but of induced equilibrium paths. The economic intuition comes from the interplay

between the current decision-maker’s strategies and her expectation of future behavior by both

those who in the future will be in the same social group as herself and those in other social groups.

Though this type of multiplicity can occur whenever there is social mobility at different speeds,

a straightforward (though not necessarily weak) assumption is suffi cient to rule it out. We next

present this assumption, which will be imposed in some of our results to ensure uniqueness.

Assumption 3 (Within-person monotonicity) For any social group k, the sequence

b
(0)
k , b

(1)
k , b

(2)
k , . . . is monotone, meaning that either b(τ)

k ≥ b
(τ+1)
k for τ = 0, 1, ... or b(τ)

k ≤ b
(τ+1)
k

for τ = 0, 1, ....

To understand the implications of within-person monotonicity, let us revisit the reasoning of

the current decision-maker. This agent, by choosing the state tomorrow, is indirectly deciding the

sequence of states at all future dates. Imagine a situation in which she expects her preferences to

first move to the right and then to the left (thus violating within-person monotonicity). In this case,

she might be happy to stay in the original state in order to balance the interests of all future selves.

However, if she expected future decision-makers to move right in the next period, she would prefer

to do so immediately, because tomorrow’s self is the only one that benefits from such a move. This

paves the way for multiplicity. If, on the other hand, the within-person monotonicity condition is

satisfied, this sort of multiplicity is not possible: her tomorrow’s self wishes a move to the right more
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than her current self, and if future decision-makers are more likely to move to the right, the current

self, who tries to balance the interest of all future selves, becomes less likely to move the right.

The intuition that within-person monotonicity should ensure uniqueness (in the sense of unique-

ness of equilibrium paths) is confirmed by the next theorem.

Theorem 3 (Uniqueness) The equilibrium is generically unique (meaning that decisions on cur-

rent policy and transitions in each state are determined uniquely within the class of symmetric

monotone MPE, except for a set of parameters of measure zero) if either (i) the discount factor β

is suffi ciently low, or (ii) Assumption 3 (within-person monotonicity) is satisfied.

That the equilibrium is generically unique when the players are very myopic (have a very low

discount factor) follows readily from the fact that such myopic players will simply maximize their

next period utility, which generically has a unique solution. It is also of limited interest, since we

are more concerned with situations in which the discount factor takes intermediate values so that

the current decision-maker takes into account the preferences of all of her future selves. For these

cases, within-person monotonicity provides a suffi cient condition for uniqueness as anticipated by

our previous discussion.

It is also worth recalling from Example 4 that in the absence of within-person monotonicity,

multiplicity of equilibria does not disappear even as β approaches 1. The reason is that even if

the current and long-run selves have similar preferences, they still need to coordinate so that the

pivotal voter at each point chooses policies in line with their long-run preferences, not their short-

run incentives. As β approaches 1, these short-run incentives become less and less important, but

the coordination problem does not vanish.

The within-person monotonicity condition and its role in uniqueness can be understood alterna-

tively as an instance of aggregation of heterogeneous preferences – in particular, the preferences of

all future selves. Consider the problem of a current decision-maker comparing two states, x and y.

This decision-maker will be implicitly aggregating the preferences of her future selves with weights

given by the discount factor and the social mobility process. Within-person monotonicity means

that if self-t and self-t′ prefer x to y, then the same is true for self-t′′, provided that t < t′′ < t′.

This order implies that each current agent acts as if she were a ‘weighted median’of her future

selves; moreover, the weights of all future selves are the same across individuals. This guarantees

that the preferences of future selves can be aggregated in a simple way and can be represented as

the weighted median future self of the current decision-maker. Since current decisions are made by

the current (weighted) median voter, this implies that they will maximize the preferences of the

weighted median future self of the current weighted median voter. This aggregation in turn further

implies uniqueness of equilibrium – once more because of the uniqueness of the weighted median

voter in the presence of such well-defined preferences. This argument also provides a complementary
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intuition for why within-person monotonicity is not needed when β is suffi ciently low: in this case,

tomorrow’s self receives almost all of the weight, and the problem of aggregation of preferences of

different future selves becomes moot.

3.3 Farsighted stability of institutions

If agents are suffi ciently farsighted, Theorem 2 yields two corollaries, which are both interesting in

their own right and will also be crucial for the rest of our analysis (even though this analysis will

be for the case in which β takes an arbitrary value).

Theorem 2 implies that when β is very high, the preferences of very distant future selves b(∞)

play a key role. These distant preferences are straightforward to compute. Let us introduce the

following notation: for every group j ∈ G, let LM (j) be the set of all groups k such that µτjk > 0

for some τ ≥ 1. In the language of Markov chains, LM (j) is a component (communication class) of

matrix M , and the set of components, {LM (j)}, is a partition of G (i.e., LM (j1)∩LM (j2) 6= ∅ and
LM (j1)∪LM (j2)∪ . . . = G. Intuitively, LM (j) includes all groups which a current member of group

j may eventually reach. Condition (3) guarantees that a member of group j may (eventually) move

to group k if and only if members of group k can move to group j. Hence, these two groups need

to be part of the same component. Moreover, from Assumption 1, each component is ‘connected’,

that is, whenever k1 < k2 < k3 and k1, k3 ∈ LM (j), we have k2 ∈ LM (j). This enables us to write

the preferences of individuals from group j in the very distant future as the average preferences of

all agents within the same component:

b
(∞)
j =

∑
k∈LM (j) nkbk∑
k∈LM (j) nk

. (8)

The next several results will be stated under the assumption that the equilibrium is unique.

Since we will also adopt Assumption 3, Theorem 3 already ensures generic uniqueness. We impose

equilibrium uniqueness as an additional assumption both for emphasis and to avoid further reference

to generic parameter values.

Corollary 1 (Farsighted stability of institutions) Suppose that Assumptions 2 and 3 hold and

the equilibrium is unique. Then state s ∈ S is stable for suffi ciently high β (formally, there exists
β̃ < 1 such that for any β ∈ (β̃, 1), qss = 1) if and only if

s ∈ arg min
z∈S

∣∣∣bdz − b(∞)
ds

∣∣∣ . (9)

This result states that when players are suffi ciently farsighted, a state is stable if and only if it

guarantees a policy outcome closer to the (group-size weighted) average of the political bliss points

of groups which the current decisions can move to than the policy choice that will result in any other

state. Applying this result to democracy, we can conclude that democracy is stable if and only if the
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median voter’s long-run future self would still prefer democracy over any other institution – i.e., if

his political bliss point lies closer to the policy that the median voter will choose under democracy

than to the policy that the decisive voter under any other institution would choose. Given single-

peakedness (and symmetry) of preferences, it is suffi cient to compare policies under democracy and

under the two neighboring institutions. More precisely, we have the following corollary:14

Corollary 2 (Farsighted stability of democracy) Suppose that Assumptions 2 and 3 hold and

the equilibrium is unique. Denote democracy by x. Then democracy is stable for suffi ciently high β

if and only if
bdx−1 + bdx

2
≤ b(∞)

dx
≤
bdx + bdx+1

2
. (10)

This corollary, which follows directly from Corollary 1, provides a simple, and as it will turn out

powerful, characterization of the stability of democracy when the discount factor, β, is suffi ciently

close to 1. Intuitively, it requires that the preferences of the current median voter in the very

distant future are closer to his own current preferences than those of the decision-makers in either

neighboring state.15 When this is the case, the current median voter prefers to delegate future

decisions to future median voters (in democracy). When it is not, he would like to empower a group

other than the one containing the median voter, which implies a deviation from democracy. We will

see in the next section that this condition not only determines whether or not democracy is stable

for high values of the discount factor β, but also shapes the comparative statics of democracy with

respect to the speed of social mobility (for any value of β).

A complementary interpretation of conditions (9) and (10) further clarifies the intuition. Note

from (8) that b(∞)
dx

is the average bliss point within the component of the social mobility matrix

M to which group x belongs. In the special case where this component corresponds to G (when

there is, possibly indirect, social mobility from each group to every other group), b(∞)
dx

is simply

the average bliss point in society, so the condition that x ∈ arg minz∈S

∣∣∣bdx − b(∞)
dx

∣∣∣ requires median
preferences, bdx , which are those which will be implemented by democracy, to be suffi ciently close

to these average preferences, b(∞)
dx
.

4 Social Mobility and the Stability of Democracy

In this section, we present our main results on how social mobility affects the stability of democracy.

Once again we simplify the exposition by assuming within-person monotonicity, relegating the

results that relax this assumption to the next section. Moreover, given our focus in this section, we

fix all other parameters of the model, and only vary the matrix of social mobility.
14To formally cover the cases in which the political institutions are the lowest and highest feasible ones, i.e., 1 and

m respectively, in what follows we set bd0 = −∞ and bdm+1 = +∞, which ensures that for these lowest and highest
political institutions, condition (10) is only relevant on one side.
15This condition is equivalent to

∣∣∣bdx − b(∞)dx

∣∣∣ ≤ ∣∣∣bdx−1 − b(∞)dx

∣∣∣ and ∣∣∣bdx − b(∞)dx

∣∣∣ ≤ ∣∣∣bdx+1 − b(∞)dx

∣∣∣.
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Definition 2 (Comparing the speed of social mobility) Suppose we have two matrices of

social mobility M and M ′ with the same components (which implies that b(∞) = b′(∞)). Then, we

say that social mobility is faster under M ′ than under M if for each group j ∈ G and each t ≥ 1,

either bj ≤ b
(t)
j ≤ b

′(t)
j ≤ b

′(∞)
j = b

(∞)
j or bj ≥ b

(t)
j ≥ b

′(t)
j ≥ b

′(∞)
j = b

(∞)
j , with the inequality between

b
(t)
j and b′(t)j being strict at least for some j.

Thus two matrices M and M ′ are comparable in terms of the speed of social mobility only if

the preferences of very distant future selves coincide, which is in turn guaranteed if they have the

same components. Under this condition, mobility under M ′ is faster if the preferences of future

selves at any time t are weakly closer to b(∞)
j (and weakly further from bj) than under M . This

definition makes it clear that faster social mobility implies that the preferences of future selves will

converge more rapidly to the preferences of the very distant self, b(∞)
j , which is the feature that will

be responsible for the nature of the comparative statics we present in this section.

Example 5 The simplest example of a collection of matrices that can be ranked in terms of speed of

mobility can be constructed as follows. Take some matrixM satisfying within-person monotonicity).

Consider a family of matrices of social mobility M (γ) = γM + (1− γ) I, where I is the identity

matrix and γ ∈ (0, 1] is a parameter. Then social mobility for M (γ′) is faster than that in M(γ) if

and only if γ′ > γ.

Another example is the following. Take some matrix Z that satisfies within-person monotonicity.

Assume that individuals are reshuffl ed according to Z at random times determined according to a

Poisson process with rate λ ∈ (0,∞). If so, the probabilities of transitions over an interval of time

of unit length, corresponding to the interval between the two periods where political decisions are

made, is given by

M (λ) = e−λ

(
I+

∞∑
k=1

λk

k!
Zk

)
.

In this case, social mobility for M
(
λ′
)
is faster than M (λ) if and only if λ′ > λ.

The next theorem shows that the relationship between social mobility and the stability of democ-

racy depends on condition (10) introduced in Corollary 1.

Theorem 4 (When social mobility increases the stability of democracy) Suppose that

Assumption 3 holds and the equilibrium is unique. Suppose also that social mobility under M ′ is

faster than under M , and inequality (10) holds for either M or M ′ (these conditions are equivalent).

Then democracy is more stable for M ′ than for M . More precisely, democracy is stable under both

M and M ′, and, furthermore, if it is asymptotically stable under M , then it is also asymptotically

stable under M ′.16

16The following stronger version of this result is also proved at the end of the proof of Theorem 4: let qsz be the
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In the case where (10) holds, this theorem thus supports De Tocqueville’s hypothesis that social

mobility contributes to the stability of democracy. The intuition for this result is instructive about

the workings of our model. We know from Corollary 1 that (10) holds, democracy is stable for

β suffi ciently close to 1, because the long-run preferences of the current median voter are close

to the preferences of the median voter in the very far future. This does not guarantee stability

for β significantly less than 1, however, because the current median voter may benefit suffi ciently

from shifting political power in the near future future to another social group. In this situation,

faster social mobility makes ‘time run faster’, making the preferences of all future selves closer to

b(∞). Put differently, with faster social mobility, individuals put less weight on events in the very

near future because the very near future itself becomes more transient, and consequently, their

preferences become more aligned with those of their distance selves. This implies that whenever

democracy is stable under M , it will also be stable under M (and the converse is not true).

Why does asymptotic stability under M guarantee asymptotic stability under M ′? To under-

stand this result, recall that faster social mobility also implies that, for any β, the preferences of all

future selves of all social groups approach the preferences of their very distant self, and because the

preferences of the very distant self are the same for all groups (within the component), the prefer-

ences of all social groups approach each other as well. Since, from condition (10), the very distant

self of the current decision-maker prefers democracy to any other political system, this is also true

for any other group in the same component as the current decision-maker, and consequently, faster

social mobility makes neighboring groups (that are in the same component) also prefer democracy

to any other political system, and thus implies that asymptotic stability under M translates into

asymptotic stability under M ′ (and once again, the converse not being true).

What if (10) does not hold? In this case, the current median voter expects that her future

selves in the very distant future will prefer another state. When the discount factor, β, is not too

close to 1, this does not necessarily imply that she would want to go to this state immediately,

and democracy may still be stable. Nevertheless, it does imply that faster social mobility makes

democracy less stable as we show in the next theorem.

Theorem 5 (When social mobility reduces the stability of democracy) Suppose that As-

sumption 3 holds, the equilibrium is unique and that social mobility under M ′ is faster than under

M . Suppose also that for M , inequality (10) does not hold, but we have

bdx−2 + bdx−1
2

≤ b(∞)
dx−1

≤ b(∞)
dx+1
≤
bdx+1 + bdx+2

2
. (11)

probability of transitioning from state s to state z under M , and q′sz be the same probability under M
′. Let us also

denote democracy by x. Then q′x−1,x ≥ qx−1,x (with strict inequality, unless q′x−1,x = qx−1,x = 1) and q′x+1,x ≥ qx+1,x
(with strict inequality, unless q′x+1,x = qx+1,x = 1), so that the speed of reaching democracy from neighboring states is
greater underM ′ than underM . A similar strengthening of Theorem 5 can also be proved, but is limited to save space.
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Then democracy is ‘less stable’ for M ′ than for M . More precisely, democracy is asymptotically

stable at neither M nor M ′, and if it is not stable at M , then it is not stable at M ′ either.

The substantive result of this theorem is that, when (10) does not hold, and under the additional

condition given by (11), faster social mobility has the opposite effect to that maintained by De

Tocqueville’s hypothesis and to that characterized in Theorem 4: it makes democracy less stable.

The intuition for this result is closely related to that of Theorem 4. When (10) does not hold,

democracy is not stable for suffi ciently high β, but may still be stable for β < 1, because the current

median voter benefits in the near term from preserving democracy. But then as in Theorem 4, faster

social mobility aligns the preferences of the current median voter with her very distant selves, but

this may not destabilize and otherwise-stable democracy.

Why does this theorem need condition (11)? The reason is the slippery slope considerations

which will be discussed in greater detail in the next section: these considerations may make in-

dividuals unwilling to move to an institution that is more preferred in the short run because this

transition might pave the way to yet other transitions which may be less desirable for them. In

this instance, as the speed of social mobility increases, institutions that lie between democracy and

the institution most preferred by the very distant self may become unstable as well, and this might

in turn make democracy stable because, due to slippery slope concerns, the current decision-maker

may not wish to move to these unstable institutions in the next period. Condition (11), on the other

hand, ensures stability of the neighboring states, thus alleviating the slippery slope effect.

5 Further Results and Extensions

In this section we discuss slippery slope considerations and extend our main results to an environ-

ment without the within-person monotonicity assumption.

5.1 Slippery slopes

We emphasized in the context of Theorem 5 how slippery slope considerations, which discourage

a transition to a preferred state because of subsequent transitions that this would unleash, play a

role in shaping when democracy may remain stable even when the preferences of future selves favor

another state. More precisely, slippery slope considerations refer to the situation where in some

state s, a winning coalition (e.g., a weighted majority) would obtain greater stage payoffs in some

state x 6= s than in s, but in equilibrium stays in s because it anticipates further, less preferred

transitions after the move to x (see Acemoglu, Egorov, and Sonin, 2012). In models without social

mobility, slippery slope considerations are more powerful when the discount factor is closer to 1

because in this case agents care little about the outcomes in the next period and a lot about future

outcomes. Slippery slope considerations continue to be important in models of social mobility, but
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they arise not when the discount factor is high but when it is intermediate. The next theorem

characterizes the extent of slippery slope considerations. Like all remaining results in the paper,

the proof of this theorem is in Appendix B.

Theorem 6 (Slippery slopes) Suppose that Assumptions 2 and 3 hold. There exist 0 ≤ β0 <

β1 < 1 such that for any β ∈ (0, 1) \ (β0, β1), if some state s ∈ S is stable, then for any x ∈ S,
the expected continuation utility of pivotal group ds from staying in x forever cannot exceed their

equilibrium continuation utility:

∞∑
t=1

∑
k∈G

βtµtdskuk (bds) ≥
∞∑
t=1

∑
k∈G

βtµtdskuk (bdx) . (12)

Furthermore, if for any states s 6= x, b(1)
ds
6= bds+bdx

2 , then one can take β0 > 0.

If, on the other hand, β ∈ (β0, β1), (12) need not hold and slippery slope considerations can

prevent certain transitions.

In other words, this result suggests that for both high and low β, all stable states give higher

expected utility to the current decision-maker than any other state (with the expectation taken with

respect to the social mobility process).17 When slippery slope considerations are important, this

need not be the case: there may be a state providing a higher expected utility to the current decision-

maker than the current state, but moving to this state would unleash another set of transitions that

reduce the discounted continuation payoffof the current decision-maker. Theorem 6 shows that such

slippery slope considerations arise only for intermediate values of β. (See Example B1 in Appendix

B for the second part of the theorem.)

The intuition for why slippery slope considerations do not play a role for myopic players (with

low β) is straightforward: myopic players care only about the next period’s state, so the subsequent

moves do not modify their rankings over states. That these considerations do not arise for very

farsighted players (with high β) is more interesting and perhaps surprising. Suppose a situation

in which the current-decision-maker, who is pivotal in the current state s, prefers a different state,

x, where by definition he will not belong to the pivotal group unless his preferences change due

to social mobility. Such preferences are possible only when members of the current pivotal group

have a positive probability of joining the group that is pivotal in state x (and conversely, those in

the group pivotal in state x could move to the group that is pivotal in state s). An implication

is that even though the distribution of political power in states s and x have a conflict of interest

today, because of social mobility their preferences in the distant future will be aligned. Therefore,

with a suffi ciently high discount factor, the current decision-maker will not be worried about deci-

sion rights shifting to the group that is pivotal in state x, averting slippery slope considerations.

17The condition b(1)ds 6=
bds+bdx

2
in this theorem rules out situations where tomorrow’s self is exactly indifferent

between these two states.
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In contrast, with intermediate discount factors, the loss of control in the near future can trigger

concerns about slippery slopes, encouraging the current decision-maker not to move in the direction

of states that increase their immediate payoffs. Notably, this result is very different from that in

Acemoglu, Egorov, and Sonin (2012), where slippery slope considerations became more important

as the discount factor became larger. The difference is due to the fact that social mobility changes

the nature of the slippery slope concerns (and as social mobility limits to zero, we recover the result

in Acemoglu, Egorov, and Sonin, 2012).

5.2 Comparative statics without within-person monotonicity

We stated our main results, Theorems 4 and 5, under the assumption that the equilibrium was

unique, which is ensured generically under Assumption 3 (within-person monotonicity). We next

provide direct generalizations of these results when neither equilibrium uniqueness nor Assumption 3

is imposed. The substantive and intuitive economic content of these results are essentially identical,

but the statements are a little more involved because the language has to be adjusted for possible

multiplicity of equilibria.

Theorem 7 (Social mobility and stability of democracy without within-person

monotonicity I) Suppose that social mobility under M ′ is faster than under M , and (10) holds

with strict inequalities. Then democracy is more stable for M ′ than for M . More precisely, democ-

racy is stable in all equilibria under M and M ′, and, furthermore, if it is asymptotically stable in

every equilibrium under M , then it is asymptotically stable in every equilibrium under M ′.

Theorem 8 (Social mobility and stability of democracy without within-person

monotonicity II) Suppose that social mobility under M ′ is faster than under M . Suppose also

that for M , inequality (10) does not hold, but

bdx−2 + bdx−1
2

< b
(∞)
dx−1

≤ b(∞)
dx+1

<
bdx+1 + bdx+2

2
.

Then democracy is less stable for M ′ than for M . More precisely, democracy is not asymptotically

stable under any equilibrium under M or M ′, and if it is not stable in every equilibrium under M ,

then there is no equilibrium under M ′ where it is stable.

6 Endogenous social mobility

In this extension, we allow the society to choose the speed of social mobility (thus endogenizing the

extent of social mobility). We show how political preferences over social mobility are formed, and

how this introduces a new set of forces limiting equilibrium social mobility.

To simplify the analysis, we focus on a setting with only three social groups, the poor (P ), the

middle class (M), and the rich (R), with shares γP , γM and γR, respectively; γP +γM +γR = 1. We
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also assume that γP , γR < 1
2 , so that the median voter belongs to the middle class. Let us denote

the states where these groups are decisive by, respectively, l (left), d (democracy), and r (right).

For ease of exposition, we consider two alternative scenarios: social mobility at the bottom (i.e.,

between P and M while leaving R intact), and social mobility at the top (i.e., between M and R

while leaving P intact). These two scenarios can be combined to obtain arbitrary patterns of social

mobility in this three-class society, but we do not discuss this hybrid case so as to keep the choice

over social mobility single-dimensional and to economize on space.

Let us normalize the preferences of the middle class to bM = 0, and let bP < 0 and bR > 0 be

the political bliss points of the poor and the rich, respectively. The constants {Ak}, which have so
far played no major role, will be important because they will parameterize the direct benefits from

social mobility (e.g., how important it is for the rich to remain rich rather than transition to the

middle class). We normalize AM = 0 and assume that AP < −b2P and AR > b2R. These two natural

assumptions impose that even when the poor rule, it is better to be in the middle class than the

poor, and even when the middle class rule, it is still better to be rich than middle class.

The rest of the section proceeds as follows. In the next subsection we use our characterization

results from Section 3 to derive the preferences of the three social groups over social mobility. In

the following subsection we allow a one-time choice over social mobility and derive our main results

on the interplay between the evolution of political institutions and endogenous social mobility. In

the last subsection we discuss the case in which there are frequent choices over social mobility,

corresponding to the decision over the speed of social mobility being made at each date together

with the policy and institutional transition decisions.

6.1 Preferences for social mobility

Let us first suppose that the level of social mobility is chosen once at the beginning and remains

constant thereafter. Under this assumption, the next two propositions characterize the preferences

of the three social groups over the pace of social mobility.

We start with social mobility at the bottom – that is, between the poor and the middle class.

Let θl be the share of middle class who become poor at the end of each period (accordingly, it is the

probability that a given person moves down). Then the probability that a member of the poor moves

up to the middle class is γM
γP
θl. The values of θl consistent with Assumption 1 are θl ∈

[
0, θlmax

]
,

where θlmax = 1
1+

γM
γP

.18

Proposition 1 (Preferences over mobility at the bottom) If γM > γP , then a higher θ
l makes

the poor better off and the middle class worse off, while the rich are indifferent over the speed of

18When θl = θlmax (and similarly, below when θ
h = θhmax), Assumption 1 holds only as a weak inequality. None of the

results we use here depend on this assumption holding as a strict inequality, or we could specify that θl ∈ [0, θlmax− ε]
for some small ε (and similarly for θh), with no impact on our results.
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social mobility.

If γM < γP , then a higher θ
l makes the poor better off and the middle class worse off. The

rich become weakly worse off as θl increases; strictly worse off if θl increases within the inter-

val

[
1−β

2−β
(

1+
γM
γP

) , 1
2

]
(because the probability of transitioning from democracy to left dictatorship

increases on this interval); and their utility is constant outside of this interval.

The poor always value social mobility at the bottom, both for economic reasons (this enables

them to transition to the middle class) and for political reasons (it can lead to institutional change

from democracy to left dictatorship when they are more numerous than the middle class). In

contrast, the middle class, which stands to transition to a lower social class, dislikes social mobility.

The rich are not directly impacted by social mobility as long as democracy remains stable. This

stability is guaranteed when γM > γP , and also holds when γM < γP provided that social mobility

is not very high. For higher θl, which corresponds to faster social mobility, democracy becomes

unstable, making way to a left dictatorship. In this case, the rich lose out indirectly from greater

social mobility – because it destabilizes democracy in favor of a left dictatorship.

We next turn to social mobility at the top. Let us now denote the share of middle class who

become rich by θh, which then implies that the share of the rich that move to the middle class

is γM
γR
θh. In this case, the values of θh consistent with Assumption 1 are θh ∈

[
0, θhmax

]
, where

θhmax = 1
1+

γM
γR

.

Proposition 2 (Preferences mobility at the top) If γM > γR, then a higher θ
h makes the

middle class better off and the rich worse off, while the poor are indifferent.

If γM < γR, then a higher θ
h makes the middle class better off, and the utility of the poor

is monotonically decreasing on the interval

[
1−β

2−β
(

1+
γM
γR

) , 1
2

]
(because the probability of transition

from democracy to elite dictatorship on this interval) and is constant ouside of this interval. The

utility of the rich is monotonically decreasing in θh if β γMγR

(
AR
b2R

+ 1
)
≥ 4, and is nonmonotone in

θ otherwise.19

Now conversely, the poor do not directly care about social mobility at the top, and they will not

oppose it as long as it does not have institutional consequences. But they do so indirectly, because

if it makes democracy less stable in favor of elites dictatorship, it makes the poor worse off. In

19More precisely, the utility of the rich is increasing on the interval[
1−β

2−β
(
1+

γM
γR

) ,min
(
(1− β)

(√
β γM
γR

(
AR
b2
R
+ 1
)
− β

(
1 + γM

γR

))−1
, 1
2

)]
, which is in this case nonempty. At

the lower end of the interval, the middle class are indifferent between staying in democracy forever and transiting to
elite dictatorship. The interval may extend all the way up to 1

2
, where transition to the rich class becomes immediate,

or to an interior point, in which case the rich do not benefit from a faster transition as it is achieved by excessively
rapid social mobility.
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contrast, social mobility at the top always benefits the middle class, but poses a trade-off for the

rich: on the one hand, they may move to the middle class, which will make them worse off; on

the other hand, the middle class may change the political institutions in their favor. Proposition

2 describes how this trade-off is resolved: a marginal increase in the pace of social mobility is

favored only if it affects the probability of transition away from democracy, and within that range,

it is more likely to have an impact for smaller θh. The rich are more likely to benefit from social

mobility if inequality between M and R, as captured by AR, is small. This is because, with limited

inequality, they do not get much extra benefit from being rich in a world with middle class policies,

but would benefit considerably from institutional change. If, in contrast, inequality is high, it is

more important for the rich to stay rich than to secure a transition to elite dictatorship; hence

a lower bR, which corresponds to less conflict of interest between the middle class and the rich,

decreases the chance that the rich will benefit from mobility. The rich are also more likely to benefit

from mobility when γM/γR is small, because in this case rich agents are expected to remain rich

longer even with more rapid social mobility.

6.2 Collective decisions over social mobility

We next turn to collective choices over social mobility. Suppose first that social mobility is decided

once at the beginning of the game and society starts in democracy. Intuitively, this corresponds to

the case in which social mobility choices are made much less frequently than decisions over political

transitions, for example, because social mobility is primarily affected by the educational system,

which can only be changed infrequently or has a slow-acting impact.

Formally, the game form from our main analysis is now augmented with a stage t = 0 where a

(constant) level of social mobility is chosen for the rest of the game. We also specify, for completeness,

the default level of social mobility θ0, though as in our main analysis, this default does not impact

equilibrium outcomes.

0. Social mobility decision:

(a) The status-quo option is to preserve the default social mobility, θ0 = θ0, and we start

with j = 1.

(b) A random agent i from group πst (j) is chosen as the agenda setter, and proposes social

mobility θ̃
j ∈ [0, θmax].

(c) All individuals vote, sequentially, with each agent i casting vote vθi (j) ∈ {Y,N,A}.

(d) If
∑n

i=1wgti (d)1
{
vθi (j) = Y

}
>
∑n

i=1wgti (d)1
{
vθi (j) = N

}
, then the current proposal

becomes the new default (θj = θ̃
j
); otherwise the default stays the same (θj = θj−1).

The game returns back to stage 0(b) with j increased by 1, unless j = g.
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(e) The social mobility decided in the last stage is implemented: θ = θg, and the game moves

to stage 1 (described in Section 2)

Observe that social mobility stage is essentially identical in structure to that for policy and

political decisions. Furthermore, to avoid uninteresting multiplicities, we assume that agents who

are indifferent between supporting and opposing a proposal choose to abstain. This assumption

ensures that pairwise plurality – meaning that one of the two groups that directly care about the

type of social mobility under consideration is larger than the other – produces a unique winner.

We start with endogenous social mobility at the bottom.

Proposition 3 (Endogenous social mobility at the bottom) If γM > γP , the unique equilib-

rium choice of social mobility at the bottom θ̂
l
is 0. If γM < γP , then the unique equilibrium choice

of social mobility at the bottom is θ̂
l

= 1−β
2−
(

1+
γM
γP

)
β
, which is decreasing in β and increasing in the

relative size of the middle class, γMγP . In either case, democracy is stable.

Here, the middle class and the poor are in direct conflict: the former want less social mobility,

and the latter want more. As long as the rich are indifferent, the larger of the two groups will be able

to implement their preferred policy. The rich, in turn, are indifferent between any social mobility as

long as this level does not induce democracy to transition to left dictatorship. Thus, if the middle

class is more numerous than the poor, they will be able to impose no social mobility, and when the

poor are more numerous, they will be able to choose higher levels of social mobility, but only up to

θ = 1−β
2−
(

1+
γM
γP

)
β
– the point where the middle class are indifferent between preserving democracy

and abandoning it. The poor would not be able to go beyond this level because the rich would now

start caring about the level of social mobility and vote against proposals increasing it beyond this

level. Put differently, a coalition of middle class and rich would stop increases in social mobility be-

yond this level. This result thus highlights how concerns about the interplay between social mobility

and the stability of democracy can act as a powerful force constraining the pace of social mobility.

The comparative statics in Proposition 3 follow from this observation. When γM < γP , social

mobility is decreasing in β because the middle class is more likely to abandon democracy when they

are more forward-looking, and this reduces the maximum threshold of social mobility that keeps

democracy stable. The comparative statics with respect to γM
γP

are also intuitive: when γM < γP , a

larger size of the middle class relative to the poor means that current middle class members would

spend comparatively less time being poor for any given θ, making them less willing to abandon

democracy. This then reduces the threshold of social mobility that keeps democracy stable. This

result also implies that both a very large and a very small middle class is bad for social mobility at

the bottom, which is greatest when the middle class is suffi ciently large to value social mobility in

the long run, but not too powerful to be able to stop it unilaterally.
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We next turn to the mobility at the top. One new result in this case is that peripheral coalitions

(between the rich and the poor) can form because both the rich and the poor may be opposed

to high social mobility – for the rich, because of its direct costs, and for the poor because of its

indirect cost in terms of its impact on stability of democracy.

Proposition 4 (Endogenous social mobility at the top) If γM > γR, then the equilibrium

choice of social mobility at the top is θ̂
h

= θhmax. If γM < γR and

AR
b2R

> (2− β)

(
γR
γM
− 1

)
+ 1 (13)

holds, then θ̂
h

= 0, and if (13) does not hold, then θ̂
h

= 1
2 . In the first two cases, democracy is

stable, whereas in the third case it is immediately abandoned in favor of elite dictatorship. Condition

(13) is satisfied for a larger range of parameters if AR is high, bR is low, β is high, or
γM
γR

is high.

When γM > γR, so that the middle class is more numerous than the rich, maximal social

mobility (consistent with Assumption 1) will arise, and because the preferences of the middle class

in this case are still suffi ciently to the left of the rich, democracy remains stable. The situation

changes dramatically, however, when γM < γR. In this case, so long as the poor are not opposed

to their preferences, the rich can dictate its level. When (13) holds, the level of inequality between

the rich and the middle class is relatively high,20 and the rich prefer having no social mobility to

inducing a transition to elite dictatorship (and because γM < γR, suffi ciently high social mobility,

in particular anything above θ = 1
2 , induces the middle class to abandon democracy). This case can

be viewed as a rich-poor coalition against the middle class (for had the poor supported the middle

class, there would be positive social mobility). If, on the other hand, (13) does not hold, the rich

prefer a transition to elite dictatorship to staying in democracy with zero social mobility. They then

enter into a middle class-rich coalition in favor of high social mobility, but one that also makes the

middle class abandon democracy.

Summarizing our results, we have seen that with social mobility at the bottom, democracy

remains stable, because there will always be a middle class-rich coalition limiting social mobility

below the level at which democracy might be endangered. In contrast, with social mobility at the

top, democracy may collapse in favor of elite dictatorship when the middle class is suffi ciently small,

when inequality at the top is low, and when there is substantial conflict of interest between the rich

and the middle class (bR high). These results confirm the long-held hypothesis that a larger middle

class is generally good for the stability of democracy.

20 In addition to AR, the level of inequality between the middle class and the rich, note that (13) depends on b2R,
since this parameter captures the extent of conflict of interest between the middle class and the rich over policy.
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6.3 Joint dynamics of institutions and social mobility

We have so far focused on the case in which social mobility is chosen only once. As already men-

tioned, this case corresponds to an environment in which decisions over the determinants of social

mobility are made relatively infrequently (compared to other political decisions). The alternative,

where both types of decisions are made at the same frequency, leads to a setup where social mobility

will be chosen in each period at the same time as the decisions about next period’s political state.

A full analysis of this case is challenging, as it requires the treatment of political decisions on two

dimensions, institutional transitions and social mobility, one of which does not even satisfy a natural

single-crossing property. It is thus beyond the scope of the current paper. Nevertheless, some basic

conclusions can be derived, and we now discuss them briefly.

As in the case with only a single decision over social mobility, in this environment elite dictator-

ship is stable, and left-wing dictatorship is stable whenever it is relevant (whenever the middle class

would consider transitioning to it). Hence, the main question is when a democracy is stable and

what level of social mobility will be chosen in this political regime. When we consider mobility at

the bottom, the conclusions are similar to those of Proposition 3, in that democracy is always stable,

and when it is more numerous than the poor, the middle class restrict social mobility because it is

not in their interest. When the poor are more numerous than the middle class, as we have already

seen, high levels of social mobility can trigger a transition to left dictatorship, and this motivates

a coalition between the middle class and the rich to restrict social mobility. The only difference in

this case is that this now permits a greater equilibrium level of social mobility. This is because the

middle class are less keen on a transition to left dictatorship as they anticipate that such a transition

will further increase social mobility once the poor become the decision-maker (since higher social

mobility is always in the interest of the poor), and this makes them more willing to preserve democ-

racy, and increases the level of social mobility that the rich are willing to tolerate (for the only reason

why the rich oppose social mobility at the bottom is to prevent a transition to left dictatorship).

Likewise, when we consider mobility at the top, the conclusions are similar to those of Proposition

4, modified mainly because the middle class now expect a slower pace of social mobility following

a transition to elite dictatorship. This translates into a greater level of social mobility at which

the middle class would be willing to abandon democracy, and as in Proposition 3, this happens

when the middle class is suffi ciently small (γM/γR low); when inequality at the top is low (AR low);

and when there is substantial conflict of interest between the rich and the middle class (bR high).

Consequently, as in the previous subsection, there is a possible instability of democracy, though

only at even higher levels of social mobility. Put differently, the instability of democracy no longer

comes hand-in-hand with high levels of social mobility, but with a high level of social mobility at

first, followed with a sharp decline in mobility once the rich come to power.

Summing up, with frequent decisions over social mobility, as with the case of infrequent decisions,
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democracy remains stable when social mobility is at the bottom, but a middle class-rich coalition

limits the extent of this type of social mobility. Instead, with social mobility at the top, democracy

might make way to elite dictatorship, because the middle class may support a high level of social

mobility but also wish to abandon democracy, particularly when it is small, when inequality at the

top is low, and when there is substantial conflict of interest between the rich and the middle class.

With both frequent and infrequent decisions, the interplay between social mobility and the stability

of democracy is an additional force constraining the equilibrium level of social mobility.

7 Conclusion

An influential thesis often associated with Alexis De Tocqueville views social mobility as an impor-

tant bulwark of democracy: when members of a social group expect to transition to some other

social group in the near future, they should have less reason to exclude these other social groups from

the political process. Despite the importance of this thesis for the evolution of the modern theories

of democracy and its continued relevance in contemporary debates, it has received little attention

in the modern political economy literature. This paper has investigated the link between social mo-

bility and the dynamics of political institutions. Our framework provides a natural formalization of

De Tocqueville’s hypothesis, showing that greater social mobility can further enhance the stability

of democracy for reasons anticipated by De Tocqueville. However, more importantly, it also demon-

strates the limits of this hypothesis. There is a robust reason why greater social mobility can under-

mine the stability of democracy: when the median voter expects to move up (respectively, down), she

would prefer to give less voice to poorer (respectively, richer) social groups, because she anticipates

to have different preferences than future agents who will occupy the same social station as herself.

We provided a tight characterization of these two competing forces and demonstrated that the im-

pact of social mobility depends on whether the mean and the median of preferences over policy are

‘close’. When they are, not only is democracy stable (meaning that the median voter would not wish

to undermine democracy), but it also becomes more stable as social mobility increases. Conversely,

when the mean and median are not close, greater social mobility reduces the stability of democracy.

In addition to enabling a tight characterization of the relationship between social mobility and

stability of democracy, our theoretical analysis also shows that in the presence of social mobility, the

political preferences of an individual depend on the potentially conflicting preferences of her ‘future

selves’, under certain conditions paving the way to multiple equilibria. When society is mobile, the

current political institution may be disliked by the current decision-makers not only because their

future selves prefer another institution (which was at the root of the instability of democracy in the

presence of high social mobility), but also because if the current institution were to continue, future

decision-makers might choose transitions that are not favored by the future selves of the current

decision-maker (which is a form of slippery slope consideration).
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Motivated by this reasoning, we further characterized the conditions for general slippery slope

considerations – which prevent certain institutional choices because of the additional series of

changes that these choices would induce. But differently from other dynamic political economy

settings, slippery slopes concerns are more important when the discount factor takes intermediate

values rather than when it is large. This is because in the presence of social mobility, high discount

factors make current decision-makers not care about losing political power to another social group

(since, in the long run, they will have preferences similar to the members of the group that will

become pivotal in a different state). But with intermediate discount factors, they still care a lot

about political developments in the next several periods, making slippery slope considerations

relevant again.

Finally, we also showed that when social mobility is endogenized (albeit in a simpler version of

our model with only three social groups), our model identifies new political economic forces limiting

the extent of mobility. First, the middle class, which tends to be pivotal, is generally opposed

to social mobility at the bottom (between the middle class and the poor). Second, a peripheral

coalition between the rich and the poor may emerge to limit social mobility at the top, because

the rich dislike this type of mobility while the poor are wary that very high levels of this type of

mobility may destabilize democracy in favor of elite dictatorship.

There are many fruitful areas of research related to the political implications of social mobility.

First, there is a clear need for systematic empirical analyses of the impact of social mobility (and

perceptions thereof) on political attitudes and the resulting political behavior. Second, though we

provided a first attempt at endogenizing social mobility, there is much more that can be done to

study the interplay of endogenous social mobility and the impact of social mobility on political

dynamics, for example by considering several groups, fully studying the case with frequent decisions

over the speed of social mobility, and introducing multiple policy levers impacting social mobility.

Third, this framework can also be enriched to include individual decisions, such as on the quantity

or quality of education, which affect the mobility of the members of a dynasty, while also shaping

political attitudes. Fourth, the framework we presented here can be generalized to include political

actions by different political coalitions (e.g., collective action, social unrest or coups), which will be

affected by social mobility as well. Finally, we also abstracted from structural change and social

change which often accompany periods of rapid social mobility and impacts the sizes of different

social groups. An extension in this direction would be particularly interesting as it could improve

our understanding of what types of structural changes contribute to the emergence and consolidation

of democracy via both their direct effects and indirectly by changing the level of social mobility.
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Appendix A: Proofs of Main Results

In Appendix A, we provide proofs of Theorems 1—5, for which we need a number of lemmas. Proofs

of lemmas A4—A8 are relegated to Appendix B. To formulate intermediate results, which together

establish that continuation utilities satisfy increasing differences, we will need the following notation.

First, define two constants:

Ū = max
j∈G
|Aj |+ max

j,k∈G
(bk − bj)2 ,

ū = min
j,k∈G:j 6=k

(bk − bj)2 .

In what follows, we say that a gm-dimensional vector v = {vj (x)}x∈Sj∈G ∈ Rgm satisfies increasing

differences if for j1, j2 ∈ G and x1, x2 ∈ S, j1 < j2 and x1 < x2 implies vj2 (x2) − vj2 (x1) >

vj1 (x2)−vj1 (x1). We call a subset X ⊂ S connected if X = [a, b]∩S for some integers a, b. We also
use the strong set order: i.e., sets X,Y ⊂ S satisfy X ≤ Y if minX ≤ minY and maxX ≤ maxY ,

and moreover, for X ⊂ S and y ∈ S, X ≤ y if X ≤ {y}. Other binary relations (<, ≥, >) are
defined similarly. We will use Φs to denote the set of states to which the society can transition (in

the next period) starting from state s in equilibrium, or more formally Φs = {x ∈ S : qsx > 0}.

Lemma A1 Suppose that vector {Vj (x)}x∈Sj∈G ∈ Rgm satisfies increasing differences. Let

Wj (x) =
∑
k∈G

µjkVk (x) . (A1)

Then vector {Wj (x)}x∈Sj∈G ∈ Rgm also satisfies increasing differences.

Proof of Lemma A1. Take two states x, y ∈ S such that x < y and consider the difference

Wj (y)−Wj (x) =
∑
k∈G

µjkZk,

where Zk = Vk (y) − Vk (x) is a sequence that is increasing in k by assumption. Let j, l ∈ G

satisfy j < l. Since, By Assumption 1, the probability distribution
{
µj·
}
is first-order stochastically

dominated by {µl·}, the expected values of a monotone sequence {Zk} satisfy the inequality∑
k∈G

µjkZk <
∑
k∈G

µlkZk.

This implies

Wj (y)−Wj (x) < Wl (y)−Wl (x) ,

which proves that {Wj (x)}x∈Sj∈G satisfies increasing differences. �
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Lemma A2 Suppose that vector {Vj (x)}x∈Sj∈G ∈ Rgm satisfies increasing differences. Suppose that

matrices Q = {qsz}s,z∈S are such that for x < y, the distribution qx· is (weakly) first-order stochas-

tically dominated by qy·. Then
{
V ′j (x)

}x∈S
j∈G

, defined by

V ′j (x) = uj (bdx) + β
∑
y∈S

qxy
∑
k∈G

µjkVk (y) , (A2)

satisfy increasing differences; moreover, if j, l ∈ G, x, y ∈ S and j < l, x < y, then(
V ′l (y)− V ′l (x)

)
−
(
V ′j (y)− V ′j (x)

)
≥ 2ū. (A3)

Proof of Lemma A2. Take two groups j, l ∈ G with j < l. For each s ∈ S, consider the following
difference:

V ′l (s)− V ′j (s) = (ul (bds)− uj (bds)) + β
∑
z∈S

qsz (Wl (z)−Wj (z)) .

By Lemma A1, the termWl (z)−Wj (z) is increasing in z. Take x, y ∈ S such that x < y; then distri-

bution qx· is (weakly) first-order stochastically dominated by qy·, and thus the expectation ofWl (z)−
Wj (z) is weakly smaller when evaluated with the former distribution than with the latter, i.e.,∑

z∈S
qxz (Wl (z)−Wj (z)) ≤

∑
z∈S

qyz (Wl (z)−Wj (z)) .

We thus have(
V ′l (y)− V ′j (y)

)
−
(
V ′l (x)− V ′j (x)

)
=

(
ul
(
bdy
)
− uj

(
bdy
))
− (ul (bdx)− uj (bdx))

+β

(∑
z∈S

qyz (Wl (z)−Wj (z))−
∑
z∈S

qxz (Wl (z)−Wj (z))

)
≥ 2 (bl − bj)

(
bdy − bdx

)
≥ 2ū. �

Lemma A3 Suppose that vector W = {Wj (x)}x∈Sj∈G ∈ Rgm satisfies increasing differences. Suppose

that X,Y are connected subsets of S and X ≤ Y . Suppose j, k ∈ G and j < k, and suppose

x ∈ arg maxz∈XWj (z) and y ∈ arg maxz∈Y Wk (z). Then x ≤ y.

Proof of Lemma A3. Suppose, to obtain a contradiction, that x > y. Since X and Y are

connected and X ≤ Y , this implies that x, y ∈ X ∩ Y . Now, x ∈ arg maxz∈XWj (z) implies

Wj (x) ≥ Wj (y), and since W satisfies increasing differences, x > y and k > j, it must be that

Wk (x) > Wk (y). However, this contradicts that y ∈ arg maxz∈Y Wk (z). �

In the following proofs, we will slightly abuse notationWj (x, y, z, . . .) to denote the continuation

value of group j when the sequence of states is x, y, z, . . ..

Proof of Theorem 1. We first establish the existence of a monotone symmetric MPE (existence

of some MPE trivially follows from Kakutani’s theorem.) We will instead prove existence of a

symmetric monotone MPE in a more general class of games, where some transitions are ruled out.
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This generality will be used in later proofs. Specifically, we require that all proposals x made in

state s must satisfy x ∈ Fs, where Fs ⊂ S, and {Fs}s∈S satisfies the following two conditions: (a)
for each s, s ∈ Fs and (b) if x < y < z or x > y > z, z ∈ Fx implies y ∈ Fx and z ∈ Fy. If we do
so, then the statement of Theorem 1 follows immediately as a special case when all transitions are

feasible (i.e., Fs = S for all s ∈ S).
We prove this claim in two steps. First, we construct a feasible monotone transition correspon-

dence, i.e., we construct a matrix Q̂ such that q̂sx > 0 only if x ∈ Fs, and also q̂x· weakly first-order
stochastically dominates q̂y· whenever x > y. Second, we prove that there is an equilibrium σ such

that Q (σ) = Q̂.

Define Π ⊂ Rgm by the following constraints: {Vj (x)}x∈Sj∈G ∈ Π if and only if (i) for all j ∈ G, x ∈
S, |Vj (x)| ≤ Ū

1−β and (ii) for all j, k ∈ G such that j < k and for all x, y ∈ S such that x < y,

(Vk (y)− Vk (x))− (Vj (y)− Vj (x)) ≥ 2ū.

This implies, in particular, that any {Vj (x)}x∈Sj∈G ∈ Π satisfies strict increasing differences, and also

that Π is compact and convex.

Consider the following correspondence Υ from Π into itself. Take a vector of values V =

{Vj (x)}x∈Sj∈G ∈ Π, and let W = {Wj (x)}x∈Sj∈G be given by (A1). For each state s ∈ S, let ps be the
ideal policy of pivotal group ds, i.e., ps = bds , and Ψs be the expected utility of the members of

pivotal group ds from transitioning into state s, i.e., Ψs = arg maxx∈FsWds (x). Furthermore, let

λs be any probability distribution over S the support of which is a subset of Ψs, and let Λs be the

set of such distributions. We also define Υ (V ) ⊂ Π to be such that V ′ ∈ Υ (V ) if and only if for

each s ∈ S there is λs ∈ Λs such that for each j ∈ G,

V ′j (s) = uj (ps) + β
∑
x∈S

λs (x)Wj (x) . (A4)

Let us prove that Υ (V ) is nonempty for any V ∈ Π. For each s, take any λs ∈ Λs (which exists,

because Λs is nonempty), and define V ′j (s) as in (A4). Then for all j ∈ G and s ∈ S,∣∣V ′j (s)
∣∣ ≤ |uj (ps)|+ β |Wj (zx)|

≤ |uj (ps)|+ β
∑
k∈G

µjk |Vk (zx)|

≤ Ū + β
Ū

1− β =
Ū

1− β .

Furthermore, notice that since W satisfies increasing differences, for any x, y ∈ S where x < y,

any a ∈ Ψx and b ∈ Ψy must satisfy a ≤ b (by Lemma A3), and thus there is c ∈ S such that

Ψx ≤ {c} ≤ Ψy, which implies that any λx ∈ Λx is (weakly) first-order stochastically dominated by

any λy ∈ Λy. Lemma A2 now implies that V ′ satisfies (A3). Therefore, V ′ ∈ Π, which means that

Υ (V ) is nonempty for any V ∈ Π.

We now prove that Υ (V ) is convex for all V . Suppose V ′, V ′′ ∈ Υ (V ). Let the corresponding

probability distributions in Λs be λ′s and λ
′′
s , respectively. For any α ∈ (0, 1), αλ′s + (1− α)λ′′s is a
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probability distribution in Λs, and in particular its support is in Fs, and moreover,

uj (ps) + β
∑
x∈S

(
αλ′s + (1− α)λ′′s

)
Wj (x) = αV ′j (s) + (1− α)V ′′j (s) .

Thus, for any α ∈ (0, 1), αV ′ + (1− α)V ′′ ∈ Υ (V ), which implies convexity of Υ (V ).

We next prove that Υ (·) is an upper-hemicontinuous correspondence. Notice that it is a

composition of the following mappings: (i) arg maxx∈FsWdx (x), which is a mapping from Π to

2S \ {∅}, the set of nonempty subsets of S (and has a closed graph when 2S \ {∅} is endowed with
discrete topology); (ii) a mapping from 2S \{∅} to ∆ (S), where each subset X ∈ 2S \{∅} is mapped
to the set of probability distributions on S with support in X, which also has a closed graph;

and (iii) a mapping from ∆ (S) to Π, which is linear and thus continuous. Since a composition of

upper-hemicontinuous correspondences is upper-hemicontinuous, Υ (V ) also satisfies this property.

Since Υ (·) is upper-hemicontinuous and Υ (V ) is nonempty and convex-valued for all V ∈ Π,

and Π is compact and convex, Kakutani’s theorem implies that there is V ∈ Π such that V ∈ Υ (V ).

By definition of Υ (V ) there are {λs}s∈S that satisfy

Vj (s) = uj (ps) + β
∑
x∈S

λs (x)Wj (x) .

Define the matrix Q̂ by setting q̂sx = λs (x), then we have

Vj (s) = uj (bds) + β
∑
x∈S

q̂sx
∑
k∈G

µjkVk (x) . (A5)

We now prove that this transition matrix Q̂ defines a feasible monotone transition correspon-

dence. It is feasible by construction, since q̂sx > 0 only if x ∈ Ψs, which is only possible if x ∈ Fs.
It is monotone, because we proved above that for any choice of {λs}s∈S , x < y implies that λx is

(weakly) first-order stochastically dominated by λy, which means this is also true for q̂x· and q̂y·.

This proves that both properties of Q̂ are satisfied.

We now construct an equilibrium σ that has transition matrix Q (σ) equal to Q̂. Consider the

game Γs,p that takes place in a period where the current state is st = s and the default policy is

pt−1 = p. Define utilities of player i who is currently in group j ∈ G by

Uj (pt, st+1) = uj (pt) + βWj (st+1)

= uj (pt) + β
∑
k∈G

µjkVk (st+1) ,

where {Vj (x)}x∈Sj∈G are defined as the unique solutions to (A5). We construct strategies of the

players as follows. Denote the stage where a representative from group ds makes proposal by J , so

πs (J) = ds.

In what follows, we proceed by backward induction, and in every stage we define strategies that

are identical in isomorphic subgames (thus ensuring that the strategy profile is Markovian) and that

are identical for different players that currently belong to the same group (thus ensuring symmetry).
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Following the logic of backward induction, we start with the political decision. In stages l > J , we

allow proposers and voters to choose any pure strategy consistent with backward induction, with

the only restriction being the following: if in stage l, the current status quo sl−1
t+1 ∈ Λs, then a

weighted majority votes against the new proposal s̃lt+1. Specifically, if in the subgame that follows

acceptance of alternative s̃lt+1, the ultimate decision is st+1 = s̃, then individuals from all groups

j ≤ ds vote N in case s̃ ≥ sl−1
t+1, and individuals from all groups j ≥ ds vote N in case s̃ < sl−1

t+1;

these voting strategies ensure that any proposal made in such situation is rejected. In stage l = J ,

the represenative from ds chosen to make a proposal randomizes over proposals in Ψs and proposes

x ∈ Ψs with probability q̂sx = λs (x) (and makes any other proposal with probability zero), and any

proposal s̃lt+1 ∈ Ψs is then accepted by voters. Specifically, if rejecting the current proposal would

ultimately lead to decision s̃, then individuals from all groups j ≤ ds vote Y in case s̃lt+1 ≤ s̃, and

individuals from all groups j ≥ ds vote Y in case s̃lt+1 > s̃. If some proposal s̃lt+1 /∈ Ψs is made at

this stage, then individuals make any voting choices consistent with backward induction. Finally,

in stages l < J , individuals make any proposals and any votes consistent with backward induction.

It is easy to see that strategies constructed in this way form an SPE in the subgame where political

decision is made, and since they only depend on payoff-relevant histories, they are Markovian.

Indeed, if these strategies are followed, then transition to state x ∈ S happens with probability q̂sx,
and the decisions made in stages l < J are irrelevant for the outcome; then at stage J , proposals in

Ψs are made with these respective probabilities, and are accepted. Finally, in each of the subsequent

stages, no alternative from Ψs is ever voted down, even by another alternative from Ψs.

To define strategies in the stage where the policy decision is made, we again solve the game by

backward induction. For l > J , we choose any pure strategies (again, identical in isomorphic sub-

games and symmetric across players in the same group). This ensures that if the current status quo

is pl−1
t = bds , then any alternative p̃

l
t 6= bds will not be accepted. For l = J , we require that the repre-

sentative from ds chooses bds , which is subsequently accepted; if another proposal is chosen, then any

pure strategies consistent with backward induction are allowed. Finally, for l < J , we allow any pro-

posals and votes to be made. We thus get a symmetric MPE in the within-period game, where policy

pt = bds is chosen with probability 1, and transition to alternative x takes place with probability q̂sx.

Denote the resulting profile of strategies σs (by construction, it does not depend on t explicitly,

as we were choosing Markovian strategies). Taking these profiles for all values of s, we get strategy

profile σ, which prescribes strategies for all players in the original game Γ. By construction, the

corresponding transition mapping is Q (σ) = Q̂, and if profile σ is played, continuation utilities of

each player in each subgame are equal to the corresponding continuation utility in the corresponding

game Γst,pt−1 . Furthermore, σ is a SPE: by one shot deviation principle, if there is a deviation, there

must be a deviation in some period t where the current state is st = s, but this contradicts that σs
is a SPE in the game Γst,pt−1 . Thus, σ is a MPE in Γ. Since in the construction of σs, the strategies

were defined identically for different players in the same group, the MPE is symmetric, and since

Q̂ is feasible and monotone, these properties are also retained by σ. Thus, σ is an equilibrium with
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the desired properties. This completes the proof of existence a symmetric monotone MPE for any

combination of feasible transitions {Fs}s∈S that we allow, and in particular for Fs = S for all s ∈ S,
as stated in the theorem.

We next prove the remaining claims in the theorem.

Proof of Part 1. Take symmetric MPE σ. Consider period t where the current state is st = s,

and the previous period’s policy is pt−1 = p. Notice that the society’s decision on pt does not affect

equilibrium actions when choosing transition, nor does it affect any actions is subsequent periods,

because strategies in σ are Markovian. Thus, without loss of any generality, we can suppress the

policy decision and endow each group j with payoff uj (pt) at time t.

As before, let J denote the stage where group ds makes a proposal. Let us prove the following

statement by backward induction: if at some stage l ≥ J the decision made (status quo for the next
stage) plt = bds , then the ultimate policy decision pt = bds . The base is trivial: in the last stage,

where l = g, the new status quo automatically becomes policy decision, so pt = plt = bds . Step:

take l < g, and suppose this statement is true for k > l, let us prove it for stage l. Suppose that

plt = bds and consider stage l + 1. Suppose, to obtain a contradiction, that pt 6= bds with a positive

probability. By induction, this is only possible if pl+1
t 6= bds with positive probability. For this to be

true, it must be that at stage l+1, representative of group πs (l + 1) with positive probability makes

proposal x 6= bds , which is subsequently accepted, and after that pt 6= bds with a positive probability.

Let H be the distribution of pt conditional on x becoming the new status quo pl+1
t after stage

l + 1; notice that if pl+1
t = bds , then pt = bds by induction. Now, if EH < bds then all individuals

in groups j ≥ ds prefer bds to H (because of quadratic utility), similarly, if EH > bds then all

individuals in groups j ≤ ds prefer bds to H. Lastly, if EH = bds then all individuals in all groups

j ≥ ds prefer bds to H, because, by assumption, under H, pt 6= bds with a positive probability,

which implies that H has positive variance, which makes the expectation bds preferable to H for

all agents. In all cases, a weighted majority strictly prefers bds to H, and hence in a sequential

voting x, leading to H, cannot be the outcome. This contradiction proves the induction step.

Let us now prove that in the subgame starting with stage J , pt = bds . To show this, it suffi ces

to prove that pJt = bds with probability 1. Notice that if p̃Jt = bds is proposed, then pt = bds ; indeed,

if this were not the case, then a weighted majority would prefer to have pt = bds to any distribution

H ′ of pt conditional on the proposal being rejects (the argument is similar to the one in the previous

paragraph), and thus in the sequential voting, agents will ensure that the new status quo is pJt = bds .

Now suppose that pt 6= bds with a positive probability; this is only possible if group ds proposes p̃
J
t 6=

bds with a positive probability. However, in this case it has a profitable deviation, which is proposing

bds and thus pt = bds . This contradiction proves that in the subgame starting with stage J , pt = bds .

The last result holds regardless of the play in stages l < J . Consequently, in equilibrium σ,

pt = bds with probability 1, which completes the proof.

Proof of Part 2. Take an equilibrium σ, and consider period t where the current state is st =

s. Notice that by the time the political decision is made, the policy is already decided (and in
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equilibrium, it is pt = bds) and the continuation utility of a player from group j is given byWj (st+1).

In what follows, let W̄ = maxx∈SWds (x); it equals Wds (y) for y ∈ Ψs.

Let us first prove that in any equilibrium, the vector of continuation utilities V = {Vj (s)}s∈Sj∈G
satisfies increasing differences. Indeed, if Q is the transition correspondence in equilibrium σ, then

V is the unique solution to (A5), and it may be obtained through infinite iteration of mapping

(A2), because, given β < 1, this mapping is a contraction on Rgm in the L1-metric. Since for any

V that satisfies increasing differences, V ′ also does by Lemma A2, the limit point V must satisfy

increasing differences.

By Lemma A1, the vector W = {Wj (s)}s∈Sj∈G also satisfies increasing differences. As before, let

Ψs = arg maxx∈SWds (x) (the maximum is taken over S because all transitions are feasible). Also,

as before, let J be the stage where group ds makes the proposal.

Suppose first that J = g, so group ds is the last to propose. In that case, ds can ensure that

it gets the payoff W̄ . Indeed, if the current status quo is sJ−1
t+1 ∈ Ψs. Then it can propose the

same alternative s̃Jt+1 = sJ−1
t+1 , in which case it will be implemented regardless of how people vote.

On the other hand, if sJ−1
t+1 /∈ Ψs, then it can propose s̃Jt+1 ∈ Ψs; then in the voting subgame, this

alternative s̃Jt+1 must be accepted, because a weighted majority (all groups j ≤ ds if s̃Jt+1 < sJ−1
t+1

and all groups j ≥ ds if s̃Jt+1 > sJ−1
t+1 ) prefer it to s

J−1
t+1 . Since group ds can ensure its maximum

payoff W̄ in this subgame, it will do so; consequently, alternatives x /∈ Ψs cannot be implemented

as st+1.

Consider the other case, where J < g. Let πs (g) = j; suppose, without loss of generality,

that j < ds (the case j > ds is considered similarly). In this case, we first prove the following:

in any subgame that includes stage g (where j makes proposal), the ultimate political decision

st+1 satisfies st+1 ∈ Ξs, where Ξs = Ψs ∪ {x ∈ S : x < min Ψs}. Indeed, consider possible values
of the current status quo sg−1

t+1 . If s
g−1
t+1 ∈ Ψs, then no proposal s̃

g
t+1 made by group j may be

accepted in equilibrium, unless s̃gt+1 ∈ Ψs as well. Therefore, in this case the statement is correct.

If sg−1
t+1 /∈ Ψs, consider two possibilities. Suppose that s

g−1
t+1 > min Ψs. Then if group j instead

proposes s̃gt+1 = min Ψs, with a similar argument to above, it will be accepted. Moreover, since

Wds (min Ψs) ≥ Wds (y) for any y ∈ S, including y > min Ψs, then j < ds implies Wj (min Ψs) >

Wj (y) for such y. Consequently, if sg−1
t+1 > min Ψs, then group j prefers to propose min Ψs as

compared to proposing any alternative y > min Ψs. If it proposes an alternative y < min Ψs that

is subsequently rejected, then sgt+1 = sg−1
t+1 and again group j is better off proposing min Ψs. Thus,

the only alternative action that group j may (weakly) prefer to proposing min Ψs is proposing

y < min Ψs that is subsequently accepted. Consequently, if s
g−1
t+1 > min Ψs, then in equilibrium

either group j proposes min Ψs, which is accepted, or some y < min Ψs that is accepted; in either

case sgt+1 ∈ Ξs. Finally, consider the possibility s
g−1
t+1 < min Ψs. The statement may only fail if group

j proposes, with a positive probability, some alternative y > min Ψs, y /∈ Ψs, which is subsequently

accepted. In that case, however, group j has a profitable deviaton: it would do better by proposing

min Ψs, since this proposal will be accepted, and Wds (min Ψs) > Wds (y) implies, since j < ds,
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that Wj (min Ψs) > Wj (y) as well. This is impossible in equilibrium, which proves that in all cases,

sgt+1 ∈ Ξs.

Since pgt ∈ Ξs in all subgames, we can prove the following statement by backward induction:

if at some stage l, 0 ≤ l ≤ g, slt+1 = max Ψs (which also equals max Ξs), then s
g
t+1 ∈ Ψs. The

base (l = g) is trivial. To establish the inductive step, suppose that this is true for stage l, and

consider stage l − 1. We have that the current status quo is sl−1
t+1 = max Ψs. Suppose, to obtain

a contradiction, that sgt+1 /∈ Ψs with a positive probability. By induction, this is only possible if

slt+1 6= max Ψs, which, in turn, is only possible if proposal s̃lt+1 6= Ψs is made and is accepted.

However, we showed that subsequent subgame will result in sgt+1 having some distribution with

support in Ξs and, moreover, with some y /∈ Ψs having a positive probability. Notice, however, that

all y ∈ Ξs satisfy Wk (y) ≤Wk (max Ψs) for all k ≥ ds, and the inequality is strict if y ∈ Ξs \Ψs for

all such k. Thus, in this case a weighted majority strictly prefers to reject proposal y, which is a

contradiction proving the induction step.

To complete the proof, notice that if group ds proposes in stage J , then it can always guarantee

utility W̄ : if preserving current status quo sJ−1
t+1 (by proposing s̃

J
t+1 = sJ−1

t+1 , so s
J
t+1 = sJ−1

t+1 ) results

in st+1 /∈ Ψs with a positive probability, group ds can propose max Ψs, which will be accepted,

since all groups k ≥ ds strictly prefer sJt+1 = max Ψs to sJt+1 = sJ−1
t+1 . Consequently, st+1 ∈ Ψs with

probability 1, which completes the proof.

Proof of Part 3. Take equilibrium σ, and take x, y ∈ S such that x < y. Suppose that qx,a > 0

and qy,b > 0; by Part 2, this implies a ∈ Ψx = arg maxz∈SWdx (z) and b ∈ Ψy = arg maxz∈SWdy (z).

We proved already that in equilibrium, {Wj (x)}x∈Sj∈G satisfy increasing differences. Since x < y,

dx < dy, and by Lemma A3 (where we set X = Y = S), we have a ≤ b.
Proof of Part 4. To prove this part of the theorem, we will show that for every equilibrium in

which there is a possible transition to more than two states (i.e., s ∈ S, |Φs \ {s}| ≥ 2), the model

parameters
(
{bk}k∈G , {Ak}k∈G , {γk}k∈G ,

{
µjk
}
j,k∈G , β

)
satisfy a nontrivial polynomial equation

with rational coeffi cients (we will achieve this by showing that if this were not the case, some equi-

librium condition would be violated). Then because the set of nontrivial polynomials with rational

coeffi cients is countable, the set of such parameters has measure zero. (In fact, we will establish

a stronger result, that the parameters must satisfy one of a finite subset of such polynomials). In

what follows, let F denote the smallest field that contains Q and all the above-mentioned parameters
(e.g., Hungerford, 1974). Furthermore, let F̄ be the set of all solutions to polynomial equations with
coeffi cients in F. Then standard arguments show that F̄ is an algebraically closed field.

Suppose, to obtain a contradiction, that for some parameter values that do not satisfy a nontrivial

polynomial equation with coeffi cients in Q the statement is nevertheless wrong. Without loss of

generality, suppose that the set of states S contains the fewest elements among any such examples.

Then the groups {ds}s∈S belong to the same irreducible component of matrix M (otherwise there

are at least two groups of states without transition between them, and we can remove one such

group), and we can without loss of generality assume that there is no other component (preferences
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of individuals in the other groups, if they exist, are irrelevant).

Let Z be the (nonempty) set of states s such that |Φs \ {s}| ≥ 2. Consider first the case where

there is s such that Φs ∩ [s+ 1,m] ≥ 2. Then s = 1 (otherwise all states to the left of x could be

removed, thus violating the assumption that the number of states in S is minimal). Furthermore,

for every state x < m, there is y > x with y ∈ Φx (otherwise, monotonicity implies that for all z ≤ x,
transitions to states greater than x are impossible, and then those states may be removed). If so,

for all x ∈ S, Φx ≥ x (otherwise, if we take the smallest x for which this is violated, we would get

a contradiction with monotonicity). Consequently, for all x ∈ (1,m), there is a unique y ∈ Φx such

that y > x (for x = 1 there are two such y, and for x = m there is none). Now let A ⊂ S be defined
by A = {x ∈ S : |Φx| ≥ 2}. Now for each x ∈ A, let ρx = max Φx and let λx = max (Φx \ {ρx});
notice that for x > 1, λx = x, and for x = 1, λx > 1. In what follows, for x ∈ A, let αx = qxΛx ,

then for x ∈ A \ {1}, qxλx = 1− αx.
Let us prove, by backward induction over the set of elements in A that the following is true for

every element x in A. First, the equilibrium utility of group dx in state x,Wdx (Λx), is not equal to its

utility if transitions correspondence was Q̃ such that q̃y· = qy· for y 6= x and q̃xλx = 1, while q̃xy = 0

for y 6= x. Second, if x 6= 1, then the transition probability to Λx, αx, satisfies a nontrivial polynomial

equation with coeffi cients being polynomials in the parameters of the model. Third, if x 6= 1, then

for any group j ∈ G and any state y < Λx, let Hjx

(
bdy
)

= 1
bdy

(
Wj (Λx)−

∑∞
τ=1 β

τ−1µ
(τ)
jdy
b2dy

)
be a function of bdy for all other parameters of the model fixed; then it is a well-defined real

analytic function in the neighborhood of the true parameter bdy , and any analytic continuation

of this function is bounded at ∞ (more precisely, there is C,K > 0 such that
∣∣bdy ∣∣ > K implies∣∣Hjx

(
bdy
)∣∣ < C). Indeed, if we prove this for all x, then the first property applied to x = 1 would

imply that the equilibrium utility of group d1 is not equal to its utility when the society immediately

transits to λ1 > 1, which would be a contradiction.

Base: If x = maxA, then equatingWdx (Λx) toWdx (x, x, x, . . .) results in a nontrivial polynomial

equation (it is nontrivial, because Wdx (Λx) −
∑∞

τ=1 β
τ−1µ

(τ)
dxdx

b2x is linear in bx, as the society

never gets to state x on a path starting from Λx, and the only terms that are quadratic in bx

come from individuals from group dx being in this group in the future, whereas Wdx (x, x, x, . . .)−∑∞
τ=1 β

τ−1µ
(τ)
dxdx

b2x has quadratic terms in bx, and the coeffi cient is nonzero because it is polynomial

in other parameters, and it cannot be equal to zero if the parameters are generic). Now, continuation

values {Vj (s)}s≥xj∈G solve the system of equations (A5) with q·· as linear functions of αx, which implies

that {Vj (s)}s≥xj∈G can be expressed as ratios of polynomials of αx; then equatingWdx (Λx) toWdx (x)

results in a nontrivial polynomial of αx (it is nontrivial, because it holds for some αx as there is such

an equilibrium, but not for some other, say αx = 0, as in that case Wdx (x) = Wdx (x, x, x, . . .) 6=
Wdx (Λx), as we just proved). Finally, the function Hjx

(
bdy
)
does not depend on αx, and the result

follows immediately by evaluating Wj (Λx).

Step: Suppose that the result is proven for z ∈ A such that z > x, let us prove it for x. Notice

that as before, equatingWdx (Λx) toWdx (x, x, x, . . .) would give rise to a polynomial equation in all
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parameters of the model and {αy}y∈A,y>x. As before, this equation is nontrivial, becauseHdxx (bdx) is

bounded for bdx high enough by induction (since x < Λx), whileWdx (x, x, x, . . .)−
∑∞

τ=1 β
τ−1µ

(τ)
dxdx

b2x

has quadratic terms, and thus is unbounded, even after dividing by bdx . Now suppose x > 1; as

before, we get that equating Wdx (Λx) to Wdx (x) gives rise to a polynomial equation in αx with

coeffi cients in all parameters of the model and also {αy}y∈A,y>x (which is nontrivial for the same
reasons as before). Since F̄ is algebraically closed, αx must satisfy a polynomial equation with
coeffi cients in F. Moreover, since F consists of ratios of polynomials of the parameters of the model
with coeffi cients in Q, we can multiply by the common denominator to prove the second part of the
statement.

Finally, we need to prove that if x > 1, then for any group j ∈ G and any state y < Λx,

Hjx

(
bdy
)
is bounded for

∣∣bdy ∣∣ large enough. Notice that Hjx

(
bdy
)
depends on bdy explicitly (and it

is a linear function), and also through {αy}y∈A,y>x, which can appear both in the numerator and
the denominator. It now suffi ces to prove that the denominator does not tend to 0 as bdy tends

to ∞. Since each αy satisfies a polynomial equation with coeffi cient that are polynomials in the
parameters of the model, either αy does not depend on bdy explicitly, or there is only a finite number

of limit points (including ∞) of the solutions to this equation as bdy tends to ∞. If for at least
one of these limit points, the denominator tends to 0, this yields a polynomial equation on αz for z

being the smallest element in A greater than x. This means that there are two polynomial equations

on αz that have a common root, which is only possible if their resultant equals zero, which again

gives a polynomial condition on the parameters of the model. Since by assumption such a condition

cannot be satisfied, we have proved the induction step.

This backward induction leads to a contradiction, as it means that the society may not be

indifferent between Transitioning from state 1 to λ1 and Λ1. This proves that there is no state

s ∈ Z such that Φs ∩ [s+ 1,m] ≥ 2. We can similarly prove that there is no state s ∈ Z such that
Φs ∩ [1, s− 1] ≥ 2. Consequently, if Z is nonempty, there must exist s ∈ Z and x, y ∈ Φs such that

x < s < y. In this case, we can follow a very similar logic and arrive at a similar contradiction. This

implies that Z is empty, which completes the proof. �

The following lemma will be used in several proofs. (Proof of this and all subsequent lemmas

are relegated to Appendix B.)

Lemma A4 Suppose that σ is an equilibrium with transition correspondence Q in a game where

the set of states is S and set of feasible transitions is F . Suppose that S′ ⊂ S is such that for any

x ∈ S′ and y ∈ S \ S′, qxy = 0 (i.e., S′ is such that Q does not include transitions out of it, which

is true, for example, if S′ = S), and suppose that the set of feasible transitions F ′ on S′ is such

that for x, y ∈ S′, qxy > 0 implies y ∈ F ′x, and y ∈ F ′x implies y ∈ Fx (i.e., F ′ is more restrictive
than F , but is nevertheless consistent with Q). Then there is an equilibrium σ′ in a game where the

set of states is S′ and the set of feasible transitions is F ′ (and other parameters are the same) such

that its transition correspondence Q′ satisfies q′xy = qxy for any x, y ∈ S′.
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The next lemma will be used in the proof of Theorem 2.

Lemma A5 Let Q = {qx,y}x,y∈S be a monotone transition correspondence, and suppose that for
any a ∈ S and b ∈ Φa, Wda (b) = W̃da, which does not depend on b. Suppose that for some x

′, y′ ∈ S,
we have Wdx′ (y

′) > W̃dx′ . Then there also exist x, y ∈ S such that Wdx (y) > W̃dx and, in addition,

the correspondence Q′ : S → S given by

q′sa =


qsa if s 6= x,
1 if s = x and a = y,
0 if s = x and a 6= y

(A6)

is monotone.

Proof of Theorem 2. Part 1. Let β0 be defined by β0 = ζ
ζ+2Ū

, where

ζ = min
s,y,z∈S,

∣∣∣bdy−b(1)ds ∣∣∣>∣∣∣bdz−b(1)ds ∣∣∣
((

bdy − b
(1)
ds

)2
−
(
bdz − b

(1)
ds

)2
)
.

Suppose to obtain a contradiction that the statement in the theorem is not true, i.e., for some

s ∈ S, a transition to a state z which does not minimize
∣∣∣bdz − b(1)

ds

∣∣∣ occurs. This means that for
some y ∈ S,

∣∣∣bdy − b(1)
ds

∣∣∣ < ∣∣∣bdz − b(1)
ds

∣∣∣. Now consider the utility of individuals from group ds if they

transitioned to y instead. Their gain in utility (after factor β) would be

Wds (y)−Wds (z) =
∑
k∈G

µdsk (Vk (y)− Vk (z))

=
∑
k∈G

µdsk

(
Ak −

(
bk − bdy

)2 −Ak + (bk − bdz)
2
)

+ β (. . .)

≥
∑
k∈G

µdsk

(
(bk − bdz)

2 −
(
bk − bdy

)2)
+

β

1− β 2Ū

=
(
bdy − bdz

)∑
k∈G

µdsk
(
2bk − bdy − bdz

)
+

β

1− β 2Ū

=
(
bdy − bdz

) (
2b

(1)
ds
− bdy − bdz

)
+

β

1− β 2Ū

=
(
b
(1)
ds
− bdz

)2
−
(
b
(1)
ds
− bdy

)2
+

β

1− β 2Ū > 0,

provided that β ∈ (0, β0). Therefore, a transition to z does not maximize the continuation utility of

the pivotal group ds (they would be better off moving to y), which contradicts Part 2 of Theorem

1.

Part 2. In this proof, let Zs = arg minz∈S

∣∣∣bdz − b(∞)
ds

∣∣∣; this set is either a singleton or consists of
two adjacent states. The result follows from the following three steps.

Step 1. Denote

ξ = min
s,y,z∈S,

∣∣∣bdy−b(∞)ds

∣∣∣>∣∣∣bdz−b(∞)ds

∣∣∣
((

bdy − b
(∞)
ds

)2
−
(
bdz − b

(∞)
ds

)2
)
,

Ξ = bm − b1,
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and take ε = ξ
4Ξ . For such ε there exists T ≥ 1 such that for all s ∈ S and t > T ,

∣∣∣b(t)ds − b(∞)
ds

∣∣∣ < ε.

Let β̃ =
(

1− ξ
4Ξ2

)1/T
. Then for β ∈ (β̃, 1), if for s ∈ S, some state z ∈ Zs is stable (satisfies

Φz = {z}), and the equilibrium path starting from state x never reaches the set Zs, then the

decisive group in s, ds, strictly prefers moving to z to moving to x: Wds (z) > Wds (x).

Proof. Consider the following difference:

Wds (z)−Wds (x) =
∑
k∈G

µdsk (Vk (z)− Vk (x))

=
∑
t≥1

∑
k∈G

∑
y∈S

βt−1µ
(t)
dsk

Pr (st = y)
(
Ak − (bk − bdz)

2 −Ak +
(
bk − bdy

)2)
=

∑
t≥1

∑
k∈G

∑
y∈S\Zs

βt−1µ
(t)
dsk
M t
ds,k Pr (st = y)

((
bk − bdy

)2 − (bk − bdz)
2
)

=
∑
t≥1

∑
k∈G

∑
y∈S\Zs

βt−1µ
(t)
dsk

Pr (st = y)
(
bdz − bdy

) (
2bk − bdy − bdz

)
=

∑
t≥1

∑
y∈S\Zs

βt−1 Pr (st = y)
(
bdz − bdy

) (
2b

(t)
ds
− bdy − bdz

)
=

∑
t≥1

∑
y∈S\Zs

βt−1 Pr (st = y)
((
bdz − bdy

) (
2b

(∞)
ds
− bdy − bdz

)
+ 2

(
bdz − bdy

) (
b
(t)
ds
− b(∞)

ds

))
=

∑
t≥1

∑
y∈S\Zs

βt−1 Pr (st = y)

((
b
(∞)
ds
− bdy

)2
−
(
b
(∞)
ds
− bdz

)2
+ 2

(
bdz − bdy

) (
b
(t)
ds
− b(∞)

ds

))

≥ β

1− β ξ − 2
β
(
1− βT

)
1− β Ξ2 − 2

βT+1

1− βΞε

>
β

1− β

(
ξ − 2

(
1− β̃T

)
Ξ2 − 2Ξε

)
=

β

1− β

(
ξ − 2

ξ

4Ξ2
Ξ2 − 2Ξ

ξ

4Ξ

)
= 0.

Thus, Wds (z) > Wds (x).

Step 2. Suppose that β is suffi ciently close to 1, and in some equilibrium, for state s ∈ S, at least
one of the states z ∈ Zs is stable. Then with probability 1 the society starting from s will end up

in one of such states (in some z ∈ Zs that is stable).
Proof. If s ∈ Zs and is stable, then the statement is trivial.

Suppose s ∈ Zs and is not stable. Without loss of generality, s < z (where z is the stable state

from Zs). Then Φs ≤ z due to monotonicity. On the other hand, from Step 1 it follows that Φs ≥ s,
for otherwise members of ds would be strictly better off moving to z. Thus, starting from s, only s

and z may be reached, and since s is unstable, z is reached with a positive probability every period.

Thus, it is reached with probability 1.

Finally, suppose s /∈ Zs. Again, without loss of generality, s < Zs. From Step 1 it follows that

Φs ≥ s. If Φs 6= {s}, then y ∈ Φs for some y > s, and then by monotonicity y ≤ z for z ∈ Zs that
is stable. Moreover, the last inequality holds for all states that may be reached from y. But such

paths must reach Zs with probability 1 (otherwise it would contradict the result in Step 1), and
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once they do, they must reach a stable state in Zs. The only remaining possibility is Φs = {s}, so
s is stable. But this is impossible from Step 1. This proves that a stable state from Zs is reached

with probability 1.

Step 3. For suffi ciently high β, there exists an equilibrium such that for each state s ∈ S, at least
one of the states z ∈ Zs is stable: Φz = {z}.
Proof. First, notice that for all states in z ∈ Zs, the corresponding bliss point of the decision-

makers’ distant future selves is the same, b(∞)
dz

= b
(∞)
ds
, and thus Zz = Zs. This follows from

Assumption 1, which implies that each component is a connected set (intersection of S with an

interval), and for each state x in this component b(∞)
dx

and lies in the convex hull of the current

selves’bliss points.

We now define the following set of feasible transitions, so as to make use of the more general result

established in the proof of Theorem 1. Suppose first that Zs is a singleton {z}. Then define the set
of feasible transitions {Fx}x∈S in the following way: y ∈ Fx if either x < z and y ≤ z, or x > z and

y ≥ z, or x = y = z (in other words, we postulate that state z is stable, and allow any transitions

that do not lead from the left of z to the right of z or vice versa). We estalished that this game has

an equilibrium, with a corresponding transition matrix Q̃; let Φ̃s be the set {x ∈ S : q̃sx > 0}. By
construction, q̃zz = 1, so Φ̃z = {z}. If there exists a symmetric monotone MPE in the original game
(without restricted transitions) that also gives rise to transition matrix Q̃, the result is proven. If

not, then by Lemma A5 there must exist a monotone deviation, namely, states x, y, a ∈ S such

that q̃xa > 0, Wdx (y) > Wdx (a) and, in addition, the correspondence q′ : S → S defined by (A6)

(replacing q with q̃) is monotone.

Notice that it must be that x = z. If not, then without loss of generality assume x > z, and

monotonicity implies y ≥ z and a ≥ z (because z is stable under Q̃), but then Wdx (y) > Wdx (a)

would be equivalent to W̃dx (y) > W̃dx (a) as the paths would be identical in the two games, with

or without restriction on transitions. But the last equation would contradict that Q̃ is a transition

matrix of a MPE. Thus, x = z, and then a = x = z (q̃za > 0 implies a = z). Now,Wdx (y) > Wdx (a)

impliesWdz (y) > Wdz (z), so y 6= z. Without loss of generality, assume y > z. But by monotonicity

of this deviation, we must have Φ̃ (y) ≥ y, and therefore all paths that start from y never reach z.

But then Wdz (y) > Wdz (z) contradicts Step 1, because, as argued above, Zz = Zs = {z}. This
contradiction completes the proof in this case.

Now assume that Zs consists of two points, z < z′. Here, we need an auxiliary step. Introduce

the set of feasible transitions F ′ in the following way: (x, y) ∈ F ′ if either x < z and y ≤ z′,

or x > z′ and y ≥ z, or x, y ∈ Zs. As before, there is an equilibrium σ′ that gives rise to a

transition mapping Q′. By feasibility, it is only possible to transition from z and z′ onto this set,

and monotonicity implies that at least one of the states z and z′ is stable in this equilibrium.

Without loss of generality, suppose that state z is stable; then from z′ it may only be possible to

stay in z′ or transit to z. Now, let us lift the restriction on transitions. If matrix Q′ corresponds to

an equilibrium in the original game, the result is proven. Otherwise, as before, by Lemma A5 there
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must exist a monotone deviation. For the tuple (x, y, a) that constitutes a deviation, it is impossible

that x < z or x > z′ (there is no monotone deviation that would not be feasible under F ′). Suppose

instead that x ∈ Zs = {z, z′}. A deviation within Zs (i.e., y ∈ Zs) cannot yield a higher utility
to ds, because it was feasible under F ′. Thus, the remaining case to consider is y /∈ Zs. If y < z,

then this deviation leads to a path that never reaches Zs, which contradicts Step 1. If y > z, then

monotonicity of deviation implies that from state y it is impossible to move to any state b < y, and

in particular to return to Zs, which again contradicts Step 1. This contradiction proves Step 3 for

the case where Zs consists of two points. This completes the proof of Part 2 of the Theorem. �

We next state three more lemmas that will be used in the remaining proofs.

Lemma A6 Suppose that for some j, the sequence b(t)j is nondecreasing (respectively, nonincreas-

ing). Then if in state s ∈ S, j = ds, then Φs ≥ s (respectively, Φs ≤ s).

Lemma A7 Suppose that for some j, the sequence b(t)j is nondecreasing (respectively, nonincreas-

ing). Furthermore, suppose that some state s ∈ S satisfies j = ds, and arg minz∈S

∣∣∣b(∞)
j − bdz

∣∣∣ = {s}.
Then Φs = {s}.

Lemma A8 Suppose that for some j, the sequence b(t)j is nondecreasing and, moreover, there is

some τ ≥ 1 such that b(τ)
j 6= b

(τ+1)
j . Fix a state s where j = ds and consider any monotone set of

mappings Q = {qxy} for x 6= s. Suppose that for some x > s, Φ (x) ≥ x. For any α, denote the

continuation utility of individuals from current group j from moving to state x by W (τ)
j (x), and

from staying in s and moving to x with probability α in each period thereafter by W (τ)
j (s;α). Let

f (α) = Wj (s;α)−Wj (x) .

Then f satisfies the following strict single-crossing property: if for some α, f (α) = 0, then f (α′) > 0

for α′ > α and f (α′) < 0 for α′ < α.

Proof of Theorem 3. Uniqueness when β is suffi ciently small is straight-

forward: consider the sets A =
{
x ∈ R | x = b

(1)
ds
for some s ∈ S

}
and B ={

y ∈ R | y =
bds+bds+1

2 for some s ∈ {1, . . . ,m− 1}
}
. For generic parameter values, A ∩ B = ∅. If

so, then there is a unique mapping satisfying the description in Part 1 of Theorem 2, and therefore,

the equilibrium is generically unique if β < β0.

We now turn to generic uniqueness under Assumption 2, which will be proved in several steps.

Step 1. Suppose that there are two equilibria σ1 and σ2, and let Q1 and Q2 be the corresponding

transition matrices. Then, for generic parameter values, if Q1 6= Q2, then there are two at least

states x, y ∈ S, x 6= y, such that the distributions q1
x· 6= q2

x· and q
1
y· 6= q2

y·. In other words, it is

impossible that transition probabilities from only one state are different.

Proof of Step 1. Suppose not, so there is a unique state s such that q1
s· 6= q2

s·. Let us first prove

that, generically, for set Ω =
(
Φ1
s ∪ Φ2

s

)
\ {s}, |Ω| = 1. Indeed, if Ω is empty, Φ1

s = Φ2
s = {s}, hence
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q1
s· = q2

s·, which contradicts the choice of s. On the other hand, suppose that there are x, y ∈ Ω

such that x 6= y; without loss of generality, x < y. Without loss of generality, suppose x ∈ Φ1
s.

Then by Part 4 of Theorem 1, for generic parameter values, y /∈ Φ1
s, which means that y ∈ Φ2

s,

which, again by Part 4 of Theorem 1, implies x /∈ Φ2
s for generic parameter values. Now, consider

three possibilities. If x < s < y, then, from Part 3 of Theorem 1, x ∈ Φ1
s implies Φ1

z ≤ x for z < s;

moreover, for such z, q2
z· = q1

z·. Therefore, if society moves from state s to x, the continuation

utilities of group ds should be the same for both equilibria: W 1
ds

(x) = W 2
ds

(x). Similarly, from

y ∈ Φ2
s implies Φ2

z ≥ y for all z > s; moreover, for such z, q1
z· = q2

z·. Thus, if the society moves from

state s to y, the continuation utilities again coincide: W 1
ds

(y) = W 2
ds

(y). But by Part 2 of Theorem

1, we have W 1
ds

(x) ≥ W 1
ds

(y) = W 2
ds

(y) ≥ W 2
ds

(x) = W 1
ds

(x), which implies that both inequalities

hold with equality, in particular, W 1
ds

(x) = W 1
ds

(y). This means x, y ∈ Ψ1
s, which, as shown in the

proof of Part 4 of Theorem 1, is impossible for generic parameter values. The remaining possibilities

are x < y < s and s < x < y; they are considered similarly.

We have therefore proved that there is a unique x ∈ Ω. Suppose that x > s (the case of x < s is

entirely analogous). Notice that q1
sx 6= q2

sx; otherwise, since Φ1
s ⊂ {s, x} and Φ2

s ⊂ {s, x} we would
have q1

ss = q2
ss, again meaning that q

1
s· = q2

s· and contradicting the choice of s. Without loss of

generality, assume q1
sx < q2

sx, so in equilibrium σ1 the society stays in s longer than in equilibrium

σ2, in expectation; this means, in particular, q1
sx < 1 and q2

sx > 0. It must be that the sequence b(t)ds
is nondecreasing and, moreover, it is nonstationary, for otherwise q2

sx > 0 would contradict Lemma

A6.

Let j = ds. The continuation utilities from moving to x are the same in both equilibria: W 1
j (x) =

W 2
j (x), because the transition probabilities are identical thereafter. Moreover, in equilibrium σ2,

transiting to x is a best response, so W 2
j (x) ≥ W 2

j (s), and in equilibrium σ1, staying is a best

response, so W 1
j (s) ≥ W 1

j (x). We thus have W 1
j (s) ≥ W 1

j (x) = W 2
j (x) ≥ W 2

j (s), meaning

that the utility of individuals from group j from staying is at least as high under σ1 as under σ2.

Denote Wj (s;α) the utility of staying in s if the subsequent equilibrium play has probability α

of moving to x; then Wj

(
s; q1

sx

)
= W 1

j (s) and Wj

(
s; q2

sx

)
= W 2

j (s). By Lemma A8, the function

f (α) : [0, 1]→ R, defined by, f (α) = Wj (s;α)−Wj (x), satisfies the strict single-crossing condition.

Now, if f
(
q1
sx

)
= 0, then f

(
q2
sx

)
> 0, meaning that Wj

(
s; q2

sx

)
> Wj (x), which contradicts that

moving to x is a best response in σ2. Similarly, if f
(
q2
sx

)
= 0, then f

(
q1
sx

)
< 0, meaning that

Wj

(
s; q1

sx

)
< Wj (x), which contradicts that staying at s is a best response in σ1. If f

(
q1
sx

)
6= 0 and

f
(
q2
sx

)
6= 0, then since staying in s is a best response in σ1, we must have f

(
q1
sx

)
> 0; similarly,

we must have f
(
q2
sx

)
< 0. But then by continuity there is α ∈

(
q1
sx, q

2
sx

)
such that f (α) = 0.

In that case, it must be that f
(
q1
sx

)
< 0 < f

(
q2
sx

)
. But this would contradict Lemma A8. This

contradiction completes the proof of Step 1.

Step 2. Let m be the minimal number of states for which there are two equilibria, σ1 and σ2. Then

m = 2.
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Proof. Suppose not, then either m = 1 or m ≥ 3. If m = 1, there is only one possible transition

mapping: Q with q11 = 1. Suppose m > 3 and let Q1 and Q2 the transition matrices in equilibria

σ1 and σ2. Let Z ⊂ S be the set of z ∈ S such that q1
z· and q2

z· are different distributions;

from Step 1 it follows that |Z| ≥ 2. In what follows, let L =
{
s ∈ S : Φ1

s ≤ s,Φ2
s ≤ s

}
and R ={

s ∈ S : Φs ≥ s,Φ2
s ≥ s

}
. By Lemma A6, L ∪R = S; let us denote I = L ∩R.

First, we show that if s ∈ S and 1 < s < m, then s /∈ I. Indeed, otherwise, we would have

Φ1
s = Φ2

s = {s}. Take x ∈ Z \ {s}. If x < s, then by Lemma A4 there exist two equilibria σ1|[1,s]
and σ2|[1,s] in the game with the set of states S′ = S ∩ [1, s]. Similarly, if x > s, then there are two

equilibria σ1|[s,m] and σ2|[s,m] in the game with the set of states S′ = S ∩ [s,m]. In either case, we

get a contradiction with that m is the lowest number of states where multiple equilibria are possible.

Second, let x = min (Z \ {1}) and y = max (Z \ {m}) (both are well-defined because |Z| ≥ 2).

We must have x ∈ L. Indeed, suppose not, then x ∈ R. If x = m, then we have Φ1
x = Φ2

x = {x}
by definition of R, and then x /∈ Z, a contradiction. If, on the other hand, x ∈ R and x < m, then,

again using Lemma A4, we get that there exist two different equilibria σ1|[x,m] and σ2|[x,m]in the

game with the set of states S′ = S ∩ [x,m], a contradiction. We can similarly prove that y ∈ R.
There are two possibilities. If Z 6= {1,m}, then x = min (Z \ {1}) = min (Z ∩ [2,m− 1]) ≤

max (Z ∩ [2,m− 1]) = max (Z \ {m}) = y. This means, again by Lemma A4 that σ1|[x,y] and

σ2|[x,y] are two different equilibria on [x, y], which again contradicts the choice of m. The remaining

case to consider is Z = {1,m}. Since m ≥ 3, 2 /∈ {1,m}. Then if 2 ∈ L, then we have two equilibria
σ1|[1,2] and σ2|[1,2] on [1, 2] and if 2 ∈ R, we have two different equilibria σ1|[2,m] and σ2|[2,m] on

[2,m]. In either case, we get a contradiction; this contradiction proves that m = 2.

Completing the proof. We have shown that there is a game with two states, S = {1, 2}, and two
equilibria. Moreover, the set of states Z where q1

z· and q
2
z· are different is the whole set S. Without

loss of generality, suppose q1
11 > q2

11. Since q
2
11 < 1, q2

12 > 0, and in a monotone equilibrium we

must have q2
22 = 1; this means q1

22 < 1, and thus q1
21 > 0 and again by monotonicity q1

11 = 1. From

Lemma A6, this implies that the sequence b(t)d1 is nondecreasing (because equilibrium σ2 exists)

and b(t)d2 is nonincreasing (because equilibrium σ1 exists). Suppose b
(∞)
d1

<
bd1+bd2

2 , then Lemma A7

implies that q1
11 = q2

11 = 1, which contradicts q1
11 > q2

11. If b
(∞)
d2

>
bd1+bd2

2 , then we get a similar

contradiction. Since b(∞)
d1
≤ b

(∞)
d2

by Assumption 1, we must have b(∞)
d1

= b
(∞)
d2

=
bd1+bd2

2 , which is

nongeneric. This proves that under Assumption 3 for generic parameter values, we have a unique

equilibrium. �

Proof of Corollary 1. By Part 2 of Theorem 2, there exists an equilibrium with the desired

properties, and since the equilibrium is unique, the result follows. �

Proof of Corollary 2. Follows immediately from Corollary 1. �

Proof of Theorem 4. Let us first prove that there is an equilibrium with democracy stable

under both M and M ′; since we consider only the cases of unique equilibria, it would imply that

democracy is stable under both M and M ′. Let us do this in case of M . Impose the following
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restrictions on transitions: transition from y to z is infeasible if y ≤ x < z or z < x ≤ y and

feasible otherwise. In the proof of Theorem 1, we established that there is an equilibrium in this

case under some transition probability matrix Q; since transitions from x were ruled out, qxx = 1.

Let us now lift the requirement on feasibility of transitions and assume that all transitions are

feasible. Lemma A5 implies that if matrix Q does not correspond to an equilibrium, then there

must be a deviation at state x. Since from (10)
bdx−1+bdx

2 ≤ b∞dx ≤
bdx+bdx+1

2 , and also we have
bdx−1+bdx

2 ≤ bdx ≤
bdx+bdx+1

2 , under Assumption 3, we have
bdx−1+bdx

2 ≤ b
(τ)
dx
≤ bdx+bdx+1

2 for any τ .

Therefore, there is no deviation that would make group dx better off. This implies that there is an

equilibrium with transition matrix Q, i.e., an equilibrium where democracy x is stable. This proves

that democracy is stable under M and, analogously, under M ′.

Suppose that democracy is asymptotically stable under M . Consider equilibrium σ. Denote

democracy by x and take y = x− 1; if y ∈ G, then asymptotic stability implies that qyx > 0. This

means that b(t)dy is nondecreasing: otherwise, Assumption 3 would imply that it is nonincreasing,

and then by Lemma A6, applied to matrix M , would imply that qyx > 0 is impossible.

Let us prove that q′yx > 0. Suppose not; then since x is stable, this is only possible if Φ′y ≤ y.

Now, applying Lemma A6 to matrix M ′, we have Φ′y ≥ y; consequently, the only possibility is

Φ′y = {y}, so y is stable under M ′. If Φ′y = {y} in equilibrium, then W ′dy (y) ≥W ′dy (x) by Part 2 of

Theorem 1. Now for matrix M , taking into account that b(τ)
dy
≤ b′(τ)

dy
for every τ ≥ 0, single-crossing

implies that Wdy (y, y, . . .) ≥ Wdy (x), where the first term is the utility of members of dy if the

society stays in y forever. But this implies, by Lemma A4, that if the set of states is restricted to

{x, y}, then under M there is an equilibrium where both x and y are stable. On the other hand,

the same Lemma A4 implies that there is also an equilibrium σ|{x,y}, where x is stable, but y is
not. However, existence of such two equilibria would contradict Lemma A8 (which is applicable

because strict inequality b(t)j < b
′(t)
j for some t implies that b(t)j < b

(∞)
j , thus b(τ)

j < b
(τ+1)
j for some

τ ≥ t). This contradiction implies that the hypothesis that q′yx = 0 is wrong, and in fact q′yx > 0.

Now, b(t)dy being nondecreasing implies that Φy ≥ y, and since Φx = {x}, we must have Φy ⊂ {x, y}.
Consequently, with probability 1, starting from y there is convergence to x. The case of y = x+ 1

is considered similarly.

Finally, we prove that convergence to democracy is faster under M ′ than under M as claimed

in footnote 16. Consider convergence from y = x − 1 (the case of convergence from z = x + 1 is

considered similarly). We need to prove that q′yx > qyx. Since x is asymptotically stable, q
(t)
xa > 0

and q(t)
ya > 0 are possible for a ∈ {x, y} only. Therefore, we have (using the same calculus as in the

proof of step 1 in Theorem 2):

β (Wj (x)−Wj (y)) =

∞∑
t=1

βt
((

q(t)
yx − q(t)

xx

)(
b
(t)
j − bdx

)2
+
(
q(t)
yy − q(t)

xy

)(
b
(t)
j − bdy

)2
)
.

50



Notice that q(t)
yx = 1− (1− qyx)t−1, q(t)

xx = 1, q(t)
yy = (1− qyx)t−1, and q(t)

xy = 0; this implies

Wj (x)−Wj (y) =
∞∑
t=1

(β (1− qyx))t−1

((
b
(t)
j − bdy

)2
−
(
b
(t)
j − bdx

)2
)

=
∞∑
t=1

(β (1− qyx))t−1
(

2b
(t)
j − bdx − bdy

) (
bdx − bdy

)
=

(
bdx − bdy

) ∞∑
t=1

(β (1− qyx))t−1
(

2b
(t)
j − bdx − bdy

)
.

Let us denote α = qyx. In terms of notation of Lemma A8 we have

f (α) = Wj (y)−Wj (x) = −
(
bdx − bdy

) ∞∑
t=1

(β (1− α))t−1
(

2b
(t)
j − bdx − bdy

)
.

If, instead of transition matrixM we used matrixM ′, but with the same probability α of transition

from y to x equal, we would obtain (similarly)

f ′ (α) = −
(
bdx − bdy

) ∞∑
t=1

(β (1− α))t−1
(

2b
′(τ)
j − bdx − bdy

)
.

Since we have b′(τ)
j ≥ b(τ)

j for all τ with at least one strict inequality, we have f ′ (α) < f (α).

Notice that if q′yx = 1, the result is proven (either qyx = q′yx = 1 or qyx < 1 = q′yx), so assume

q′yx < 1 from now on. Consider two cases. If qyx < 1, then since qyx > 0 (as x is asymptotically

stable under M), α = qyx must satisfy f (α) = 0. This implies f ′ (a) < 0. Now, since q′yx ∈ (0, 1),

it must satisfy f ′
(
q′yx
)

= 0, and then by Lemma A8 we must have qyx = α < q′yx. Now consider

the second case, where qyx = 1. By Part 2 of Theorem 1, we must have f (α) ≤ 0, in which case

f ′ (1) = f ′ (α) < 0. By Lemma A8 and continuity of f ′ (·), we must have f ′ (ξ) < 0 for all ξ ∈ [0, 1],

and thus f ′
(
q′yx
)
< 0. Again by Theorem 1 this is only possible if q′yx = 1. �

Proof of Theorem 5. Suppose that b(∞)
dx
≤ bdx (the opposite case is analogous). Since (10) does

not hold, we have that
bdx−2+bdx−1

2 ≤ b
(∞)
dx−1

≤ b
(∞)
dx

<
bdx−1+bdx

2 . In this case,
bdx−2+bdx−1

2 ≤ b
(∞)
dx−1

<
bdx−1+bdx

2 implies, using the existence of equilibrium with restricted transitions (similarly to the

proof of Theorem 4) and then Lemma A5, that under both M and M ′ there are equilibria where

state x− 1 is stable. If so, democracy x is not asymptotically stable under either M or M ′.

Suppose, to obtain a contradiction, that democracy is not stable under M , but is stable under

M ′. Denoting y = x − 1, Lemma A6 and the fact that y is stable implies that Φx ∈ {x, y}. Then
since x is not stable under M , qxy > 0, furthermore, since x is stable under M ′, q′xx = 1. Since

b
(∞)
dx

< bdx , the fact that mobility under M
′ is faster than under M implies that b(t)dx ≥ b

′(t)
dx

for

all t ≥ 1, with at least one strict inequality. If so, taking the equilibrium under M and changing

transition probabilities so that x is stable would give another equilibrium under M (with the set

of states restricted to {x, y}), similarly to the proof of Theorem 4. However existence of two such

equilibria contradicts Lemma A8; thus if democracy is not stable under M , then it is not stable

under M ′ either. �

51



Appendix B: Additional Proofs, Results, and Examples – Not for
Publication

B1 Proofs of Lemmas from Appendix A

Proof of Lemma A4. By construction, transition mapping Q′ is feasible under S′ and F ′. Further-

more, the continuation utilities under transition mapping Q′, in particular, W ′j (x, y, z, . . .) for any

group j and any path of states x, y, z, . . . are the same: W ′j (x, y, z, . . .) = Wj (x, y, z, . . .). Therefore,

for every state s ∈ S′, if x ∈ S′ is such that q′sx > 0, then transition to x maximizes the utility

of group dx among all feasible transitions: x ∈ arg maxz∈F ′sW
′
ds

(z); indeed, if for some y ∈ F ′s we
had W ′ds (y) > W ′ds (x), then, since y ∈ F ′s implies y ∈ F ′s, we would have y ∈ Fs, qsx > 0, and

Wds (y) > Wds (x), which cannot be the case if σ is an equilibrium, by Part 2 of Theorem 1. Given

that, we can repeat the argument in the proof of Theorem 1 to construct the strategy profile σ′ that

gives rise to transition mapping Q′ and is an equilibrium. This completes the proof. �

Proof of Lemma A5. Suppose, to obtain a contradiction, that for any x, y ∈ S such that

Wdx (y) > W̃dx , Q
′ given by (A6) is not monotone. Take x, y, a ∈ S such that |y − a| is minimal

among all tuples (x, y, a) such that Wdx (y) > W̃dx and a ∈ Φx (informally, we consider the shortest

deviation). By our assertion, the corresponding Q′ is not monotone. Since Q is monotone and Q

and Q′ differ by the distribution Qx· and Q′x· only, there are two possibilities: either for some z < x

and some b ∈ Φz, y < b ≤ Φx, or for some z > x and some b ∈ Φz, Φx ≤ b < y. Assume the former

(the latter case may be considered similarly). Let s be defined by

s = min (z ∈ S : b > y for some b ∈ Φz) = min (z ∈ S : Φz � y) ;

in the case under consideration, the set of such z is non-empty (e.g., x is its member, and z found

earlier is one as well), and hence state s is well-defined. We have s < x; since Q is monotone,

Φs ≤ Φx.

Notice that if we redefined Φ′ (s) = {y}, we would get a monotone correspondence (in other
words, a deviation by the society in state s to y is monotone) Indeed, there is no state z̃ such that

z̃ < s and y � Φz̃ ≤ Φs by construction of s, and there is no state z̃ > s such that Φs ≤ Φz̃ � y

as this would contradict that y < b for some b ∈ Φs (indeed, the latter would imply Φz̃ > y).

By hypothesis, Wds (y) ≤ W̃ds , since this deviation cannot be profitable for ds. Moreover, by the

definition of W̃ds , for any b ∈ Φs such that Wds (b) = W̃ds and, moreover, there is b ∈ Φs such that

y < b (such b exists by definition of s). Since W satisfies increasing differences and ds < dx, for this

b we have Wdx (y) < Wdx (b).

On the other hand, recall that Wdx (y) > W̃dx . We therefore have

Wdx (b) > Wdx (y) > W̃dx ,

so Wdx (b) > W̃dx . Notice, however, that y < b ≤ a for all a ∈ Φx, and strict inequality Wdx (b) >

W̃dx = Wdx (a) implies a 6= b, so in fact y < b < a. This implies that |b− a| < |y − a|. This
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contradicts the choice of x, y, a ∈ S such that |y − a| is minimal among tuples (x, y, a) such that

Wdx (y) > W̃dx and a ∈ Φx, as tuple (x, b, a) satisfies the same properties but has |b− a| < |y − a|.
This contradiction proves that our initial assertion was wrong, and this proves the lemma. �

Proof of Lemma A6. Suppose that b(t)j is nondecreasing (the complementary case is considered

similarly). Suppose, to obtain a contradiction, that Φs � s. Denote x = min Φs, then x < s. Notice

that for any y ∈ S, we have

βWj (y) =
∞∑
t=1

βt
∑
a∈S

q(t)
ya

∑
k∈G

µ
(t)
jkuk (bda)

=
∞∑
t=1

βt
∑
a∈S

q(t)
ya

∑
k∈G

µ
(t)
jk

(
Ak − (bk − bda)2

)
=

∞∑
t=1

∑
k∈G

βtµ
(t)
jkAk −

∞∑
t=1

βt
∑
a∈S

∑
k∈G

q(t)
yaµ

(t)
jk (bk − bda)2 .

Now take any two states y < z and consider the difference Wj (z)−Wj (y):

β (Wj (z)−Wj (y)) =

∞∑
t=1

βt

(∑
a∈S

∑
k∈G

q(t)
yaµ

(t)
jk (bk − bda)2 −

∑
a∈S

∑
k∈G

q(t)
zaµ

(t)
jk (bk − bda)2

)

=

∞∑
t=1

βt
∑
a∈S

(
q(t)
ya − q(t)

za

)∑
k∈G

µ
(t)
jk (bk − bda)2

=
∞∑
t=1

βt
∑
a∈S

(
q(t)
ya − q(t)

za

)(∑
k∈G

µ
(t)
jk b

2
k − 2

∑
k∈G

µ
(t)
jk bkbda +

∑
k∈G

µ
(t)
jk b

2
da

)

=
∞∑
t=1

βt

((∑
k∈G

µ
(t)
jk b

2
k

∑
a∈S

(
q(t)
ya − q(t)

za

))
+
∑
a∈S

(
q(t)
ya − q(t)

za

)(
−2b

(t)
j bda + b2da

))

=
∞∑
t=1

βt
∑
a∈S

(
q(t)
ya − q(t)

za

)(
−2b

(t)
j bda + b2da

)
=

∞∑
t=1

βt
∑
a∈S

(
q(t)
ya − q(t)

za

)((
b
(t)
j

)2
− 2b

(t)
j bda + b2da

)

=
∞∑
t=1

βt
∑
a∈S

(
q(t)
ya − q(t)

za

)(
b
(t)
j − bda

)2
.

Applying this to x and s, we have

β (Wj (x)−Wj (s)) =

∞∑
t=1

βt
∑
a∈S

(
q(t)
sa − q(t)

xa

)(
b
(t)
j − bda

)2
. (B1)

Consider two cases. The first case is where Φs ≤ s; this holds for generic parameter values, as

in Part 4 of Theorem 1 (indeed, x ∈ Φs and x < s). In that case, b(t)j ≥ bj ≥ bda for all a ≤ s, so
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b
(t)
j ≥ bda and thus

(
b
(t)
j − bda

)2
is decreasing in a for a ≤ s. Consequently, for each t,

∑
a≤s

q(t)
sa

(
b
(t)
j − bda

)2
≤
∑
a≤s

q(t)
xa

(
b
(t)
j − bda

)2
,

because the distribution q(t)
s· first-order stochastically dominates q

(t)
x· as the equilibrium is monotone.

This implies Wj (x) ≤ Wj (s). In fact, this inequality is strict. This can be seen for t = 1: the

probability distributions q(1)
s· and q

(1)
x· are different, and

(
b
(t)
j − bda

)2
is strictly increasing in a.

Thus, Wj (s) > Wj (x), which contradicts Part 2 of Theorem 1 in that x ∈ Φs does not maximize

the utility of group j = ds. Notice that for the proof in this case, we did not need that b
(t)
j is

monotone in t, only that b(t)j ≥ bj for all t.
Now consider the case where for some y ∈ Φs, y > s. This case is nongeneric, but the statement

holds here as well. Indeed, consider Wj (s); it is a linear combination of paths where the society

stays in s for τ ≥ 1 periods (including the current period ) and then departs either to lower or

higher states. All equilibrium paths {st} where the eventual departure is to lower states (starting
from some z such that x ≤ z ≤ s) satisfy Wj (z | ∀t : st ≤ z) > Wj (x), similarly to the previous

case. Now consider some path that eventually departs to higher states, and suppose that it stays in

z for exactly τ periods, after which it departs to y > s. Let us denote the probability distribution

of states in period t ≥ 1 if an immediate transition to x occurs by p(t)
x· , and that in the case an

immediate transition to y occurs by q(t)
y· ; then these are also distributions of states in period t + τ

if transition occurs in period τ . We know that the individuals in group j are indifferent between

transiting to x and to y, meaning that

∞∑
t=1

βt
∑
a∈S

∑
k∈G

p(t)
xaµ

(t)
jk (bk − bda)2 =

∞∑
t=1

βt
∑
a∈S

∑
k∈G

q(t)
yaµ

(t)
jk (bk − bda)2 ,

which, by increasing differences, implies

∞∑
t=1

βt
∑
a∈S

∑
k∈G

p(t)
xaµ

(t+τ)
jk (bk − bda)2 ≤

∞∑
t=1

βt
∑
a∈S

∑
k∈G

q(t)
yaµ

(t+τ)
jk (bk − bda)2 ;

this follows from that b(t+τ)
j ≥ b(t)j for each t (as earlier in the proof, only the expectations of µ(t+τ)

j·
matter). Now we have

βWj

s, . . . , s︸ ︷︷ ︸
τ times

, y, . . .

 =

τ∑
t=1

βt
∑
k∈G

µ
(t)
jk (bk − bj)2 + βτ

∞∑
t=1

βt
∑
a∈S

∑
k∈G

q(t)
yaµ

(t+τ)
jk (bk − bda)2

≥
τ∑
t=1

βt
∑
k∈G

µ
(t)
jk (bk − bj)2 + βτ

∞∑
t=1

βt
∑
a∈S

∑
k∈G

p(t)
xaµ

(t+τ)
jk (bk − bda)2

= βWj

s, . . . , s︸ ︷︷ ︸
τ times

, x, . . .

 .
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Consequently, for each such path, we have

Wj

s, . . . , s︸ ︷︷ ︸
τ times

, y, . . .

 ≥Wj

s, . . . , s︸ ︷︷ ︸
τ times

, x, . . .

 > Wj (x) .

Aggregating, we have that Wj (s) > Wj (x) holds in this case as well, and this contradicts Part 2 of

Theorem 1. This contradiction completes the proof. �

Proof of Lemma A7. Suppose that b(t)j is nondecreasing (the complementary case is considered

similarly). By Lemma A6, Φs ≥ s. Suppose, to obtain a contradiction, that Φs 6= {s}, then x ∈ Φs

for some x > s. Since the calculations from the proof of Lemma A6 are applicable, (B1) implies

(since Φs ≥ s)

β (Wj (s)−Wj (x)) =

∞∑
t=1

βt
∑
a≥s

(
q(t)
xa − q(t)

sa

)(
b
(t)
j − bda

)2
.

For any fixed t, consider the sequence
∣∣∣b(t)j − bda∣∣∣ for a ≥ s. Since bds = bj ≤ b

(t)
j ≤ b

(∞)
j , we have

arg minz∈S

∣∣∣b(t)j − bdz ∣∣∣ = {s}, so b(t)j ∈
[
bds ,

bds+bds+1
2

)
. This implies

∣∣∣b(t)j − bda∣∣∣ is increasing in a for
a ≥ s, and thus

(
b
(t)
j − bda

)2
is also increasing. Similarly to the proof of Lemma A6, this implies

∑
a≥s

q(t)
xa

(
b
(t)
j − bda

)2
≥
∑
a≥s

q(t)
sa

(
b
(t)
j − bda

)2
,

since the distribution q(t)
x· first-order stochastically dominates q

(t)
s· , and for at least one such t (e.g.,

t = 1) the inequality is strict. This implies Wj (s) > Wj (x), but since we assumed x ∈ Φs, this

contradicts Part 2 of Theorem 1. This contradiction implies that Φs = {s}, which completes the
proof. �

Proof of Lemma A8. Suppose that f (α) = 0 and α′ > α (the case α′ < α is analogous). We

have W (τ)
j (s;α) < W

(τ)
j (x) for all τ > 1, because the sequence of expected bliss points b(t+τ)

j ≥ b(t)j
for all τ , and for at least some t the inequality is strict. Therefore, we have

f
(
α′
)
− f (α) = Wj

(
s;α′

)
−Wj (s;α)

= β
((

1− α′
)
W

(1)
j

(
s;α′

)
+ α′W

(1)
j (x)− (1− α)W

(1)
j (s;α)− αW (1)

j (x)
)

= β
(

(1− α)
(
W

(1)
j

(
s;α′

)
−W (1)

j (s;α)
)

+
(
α′ − α

) (
W

(1)
j (x)−W (1)

j

(
s;α′

)))
> β (1− α)

(
W

(1)
j

(
s;α′

)
−W (1)

j (s;α)
)

= · · ·

> (β (1− α))2
(
W

(2)
j

(
s;α′

)
−W (2)

j (s;α)
)

= · · ·

> (β (1− α))τ
(
W

(τ)
j

(
s;α′

)
−W (τ)

j (s;α)
)
for any τ > 2.

Since W (τ)
j (s;α′)−W (τ)

j (s;α) is bounded, we must have f (α′)− f (α) > 0. This proves that f (α)

satisfies the single-crossing condition. �
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B2 Omitted Proofs of From the Text

Proof of Theorem 6. Suppose not. Since one can always pick β0 = 0, it suffi ces to prove existence

of β1 with desired properties. Suppose that such β1 does not exist. Then for some pair of states

s, x ∈ S there are values of β arbitrarily close to 1 for which (12) does not hold. Again, without loss

of generality, assume x > s. Multiplying both sides by (1− β) and taking limit as β → 1, we get,

again after simplifications, that (bdx − bds)
(

2b
(∞)
ds
− bds − bdx

)
≥ 0, and since x > s, b(∞)

ds
≥ bds+bdx

2 .

Consider two possibilities. If b(∞)
ds

>
bds+bdx

2 , then
∣∣∣bds − b(∞)

ds

∣∣∣ > ∣∣∣bdx − b(∞)
ds

∣∣∣, which means that
s /∈ arg maxz∈S

∣∣∣bdz − b(∞)
ds

∣∣∣. Take y ∈ arg maxz∈S

∣∣∣bdz − b(∞)
ds

∣∣∣; then by Assumption 2, dy belongs to
the same irreducible component of social mobility matrix M as ds, which means b

(∞)
dy

= b
(∞)
ds
, and

therefore y ∈ arg maxz∈S

∣∣∣bdz − b(∞)
dy

∣∣∣. By Lemma A7, it must be that y is stable in any equilibrium.
But then Step 2 of the proof of Part 2 of Theorem 2 implies that for some β1 < 0, for all β > β0

state s cannot be stable, a contradiction.

The remaining possibility is b(∞)
ds

=
bds+bdx

2 , in which case b(∞)
ds
− bds = bdx − b

(∞)
ds
; however,

Assumption 3 then implies that for all t ≥ 1, 0 ≤ b
(t)
ds
− bds ≤ bdx − b

(t)
ds
, and thus

∣∣∣bds − b(t)ds ∣∣∣ >∣∣∣bdx − b(t)ds ∣∣∣. From this it immediately follows that (12) holds, contradicting the assertion that it

does not. This contradiction proves that slippery slope is impossible for high β.

Let us now prove that under the extra condition, one can take β0 > 0. Suppose not; then

it must be that for some pair of states s, x ∈ S there are values of β arbitrarily close to 0 for

which (12) does not hold. Without loss of generality, assume x > s. Dividing by β (so that the

term for t = 1 does not contain β) and taking the limit as β → 0, we get, after straightforward

simplification, that (bdx − bds)
(

2b
(1)
ds
− bds − bdx

)
≥ 0, and since x > s, b(1)

ds
≥ bds+bdx

2 . Since we

assumed that equality is impossible, it must imply that b(1)
ds

>
bds+bdx

2 . However, this implies that∣∣∣bds − b(1)
ds

∣∣∣ > ∣∣∣bdx − b(1)
ds

∣∣∣, and if so, Part 1 of Theorem 2 implies that for some β0 > 0, for all

β < β0 state s cannot be stable. This contradicts the assumption of the theorem, thus proving

that slippery slope is impossible for low β.

Finally, Example B1 proves that for some values of β the statement is not necessarily true, which

completes the proof of the theorem. �

The next example illustrates the second part of Theorem 6

Example B1 (The non-monotonic eff ect of beta on slippery slope) There are five groups

of identical size with political bliss points b = (−4,−3, 0, 3, 4)′, all Ai = 0, and the social mobility

matrix is given by

M =


7
10

1
5

1
10 0 0

1
10

3
5

1
10

1
10

1
10

1
10

1
10

3
5

1
10

1
10

1
10

1
10

1
10

3
5

1
10

0 0 1
10

1
5

7
10

 .
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For suchM , the equilibrium is generically unique for any discount factor β. Notice that this example

satisfies all the assumptions, in particular Assumption 3 (the simplest way to see this is to notice

that matrix M satisfies the conditions of Lemma B3).

With this transition matrix, members of the middle group 3 expect, on average, to prefer policy

0 due to symmetry, and thus there is no transition out of state 3. For members of group 4, the

preferences of their future selves are the following. The expected political bliss policy of their

tomorrow’s self is 3
2 , the next day it is

3
4 , then

3
8 , etc. This means that tomorrow’s self is indifferent

between living under state 3 or 4, whereas all future selves strictly prefer state 3. This implies that

in equilibrium, group 4 must move from state 4 to state 3 with probability one. Similarly, group 2

would move out of state 2 to state 3 with probability one.

Consider the incentives of groups 1 and 5 (they are symmetric). For members of group 5, the

preferences of their future selves are: 17
5 = 3.4, 67

25 = 2.68, 1013
500 = 2.026, 3733

2500 = 1.4932, . . . Thus,

ideally, members of this group would prefer to have state 4 in periods 2, 3, 4, and state 3 thereafter.

However, by the argument above, they can only enjoy state 4 in one period, for after that group 4

which is in power in that state would move to state 3.

Thus, members of group 5 effectively compare staying in state 5 versus spending one period

in state 4 and moving to 3 thereafter. Not surprisingly, if β is small, then they prefer to move,

discounting the disutility from moving to 3 too fast.

The following describes the equilibrium:

If 0 < β < 0.0282, then the equilibrium is φ (1, 2, 3, 4, 5) = (2, 3, 3, 3, 4) (here, we used φ to

denote a deterministic transition mapping).

If 0.0282 < β < 0.0368, then the equilibrium involves mixing between transiting from 1 to 2 and

staying at 1, and, symmetrically, between transiting from 5 to 4 and staying at 5. Here, the slippery

slope effects begin to kick in: members of group 5 are already unhappy about fast transition to 3,

and try to mitigate the problem by delaying this transition and staying at 5 with some probability.

The best response to staying in 5 is still moving to 4, especially because the third period, where

current members of group 5 are most willing to spend in state 4, is given suffi cient weight; at the

same time, the best response to moving to 4 is now staying in 5, because it is much more preferable

to spend the third period in states 5 or 4 rather than 3. This leads to mixing.

If 0.0368 < β < 0.5621, then the equilibrium is φ (1, 2, 3, 4, 5) = (1, 3, 3, 3, 5). Here, slippery

slope considerations are in effect: the decision-maker in state 5 are suffi ciently concerned about

moving to state 3 too fast, and thus they prefer to stay in state 5. They are willing to stay in state

5 now even if this implies staying there forever.

If 0.5621 < β < 1, then the equilibrium involves mixing between transiting from 1 to 2 and

staying at 1, and, symmetrically, between transiting from 5 to 4 and staying at 5 (for example, if

β = 0.9, then they stay with probability 0.69 and move with probability 0.31). For these values of

β, distant future is suffi ciently important. Decision-makers in state 5 still prefer to stay in state 5

instead of moving to state 4 immediately; however, now the weight given to distant future is high,
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and so if the society were to stay in state 5 forever, they would prefer to deviate immediately and

move to 4 (followed by 3).

This example illustrates that slippery slope considerations may be important only for interme-

diate values of β, but not for very low or very high ones.

To prove Theorem 7 and Theorem 8, we need the following stronger version of Lemma A6. It

was, essentially, established in the proof of Lemma A6, but not formulated.

Lemma B1 Suppose that for some j, for all t > 0, b(t)j ≥ bj (respectively, b
(t)
j ≤ bj). Suppose,

furthermore, that in state s ∈ S such that j = ds, either Φs ≥ s or Φs ≤ s. Then Φs ≥ s

(respectively, Φs ≤ s).

Proof. Suppose that for all t > 0, b(t)j ≥ bj (the complementary case is considered similarly).

Suppose, to obtain a contradiction, that Φs � s. In this case, by assumption, we must have Φs ≤ s.
If so, the argument in the proof of Lemma A6 (first case in that proof) goes through as long as

b
(t)
j ≥ bj for all t. We thus arrive at a contradiction that completes the proof. �

Proof of Theorem 7. Notice that for all τ , either bdx ≤ b
(τ)
dx
≤ b′(τ)

dx
≤ b′(∞)

dx
= b

(∞)
dx

or the opposite

inequalities hold. Then
bdx−1+bdx

2 < b
(∞)
dx

<
bdx+bdx+1

2 implies that
bdx−1+bdx

2 < b
(τ)
dx

<
bdx+bdx+1

2 for

all τ . We use this to prove that for each equilibrium σ under M , democracy is stable (the same

argument would apply to M ′). Suppose not, so for democracy x, Φ (x) 6= {x}. Let s ∈ Φ \ {x} and,
as in the proof of Lemma A6, consider the utility of decision-makers at x, group dx, if the society

stayed in x for τ periods and then transitioned to s. Notice that for any τ > 0,

Wdx

x, . . . , x︸ ︷︷ ︸
τ times

, s, . . .

 > Wdx (s) .

Indeed, if s > x, then by monotonicity distribution q(t+τ)
s· (weakly) first-order stochastically domi-

nates q(t)
s· for any t ≥ 1, which in turn (weakly) first-order stochastically dominates the degenerate

distribution with an atom at s, which implies that for all t > τ , the future self with the expected

ideal point btdx would prefer to have stayed in x for τ times. Since for the first τ selves, such

preference is strict (they get their ideal point x as opposed to some other state), the inequality

is strict. Similar logic applies to the case s < x. This implies that for any s ∈ Φ \ {x}, staying
in x for any number of periods and eventually transitioning to s is preferred to transitioning to s

immediately. Aggregating this inequality over s ∈ Φ \ {x}, we find that Wdx (x) > Wdx (s) for any

such s. However, this contradicts Part 2 of Theorem 1. This contradiction proves that Φ (x) = {x}
in each equilibrium under M and, similarly, under M ′.

Denote y = x − 1 and z = x + 1, and suppose for simplicity that both y, z ∈ S (if not, then a
straightforward simplification of the argument applies). Suppose that under M , x is asymptotically
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stable in any equilibrium. Suppose, to obtain a contradiction, that b(∞)
dy
≤ bdy ; let us prove that

under M , there is some equilibrium σ with Φ (y) ≤ y (this would contradict asymptotic stability).

Since Definition 2 applies to matrices M and M ′, we have b(t)dy ≤ bdy for all t ≥ 1. Notice that if

the parameter values are generic (in the sense of Part 4 of Theorem 1), then by that result, in any

equilibrium, either Φ (y) ≤ y or Φ (y) ≥ y, and then Lemma B1 implies that Φ (y) ≤ y. In the case
of nongeneric parameter values, we need to take a sequence of generic ones that converges to the

original parameter values and find equilibria in those cases; taking the limit, we would again find

an equilibrium with Φ (y) ≤ y. Existence of such equilibrium σ contradicts asymptotic stability of

x under M , which proves that b(∞)
dy

> bdy . We can similarly prove that b
(∞)
dz

< bdz .

Suppose that there is equilibrium σ′ underM ′ where x is not asymptotically stable. This implies

that either Φ′ (y) = {y} or there is some s < y with s ∈ Φ′ (y) or Φ′ (z) = z or there is some s > z

with s ∈ Φ′ (z). We consider the first and the second possibilities, while the third and the fourth

are completely analogous.

Consider the case Φ′ (y) = {y}. Take matrix M , and consider restricted transitions a ∈ Fs

if either s ≥ x or a ≤ y (i.e., any transitions are possible, except if the origin is y or below

and destination is x or above). Consider equilibrium σ̃ under these restricted transitions. Since

Φ (y) ≤ y, Lemma B1 is applicable and implies Φ̃ (y) = {y}. Notice that the same logic as above
implies that democracy is stable: Φ̃ (x) = {x}. Let us remove the restriction on transitions; by
Lemma A5, we either get an equilibrium, or group dy prefers to deviate from staying in y to

moving to x. However, if they prefer to do so under M , single-crossing considerations would imply

that they would prefer to do so under M ′, which means that there cannot exist an equilibrium σ′

under M ′ such that Φ′ (x) = {x} and Φ′ (y) = {y}. This contradiction implies that removing the
restrictions results in an equilibrium σ under M where y is stable. However, this contradicts that

y is asymptotically stable for all equilibria under M .

Now consider the case where there is s < y with s ∈ Φ′ (y). If Φ′ (y) ≤ y, we would get an

immediate contradiction with Lemma B1, thus, we must have that x ∈ Φ′ (y) as well, and therefore

Wdy (x) = Wdy (s). Since we have b(t)dy ≥ bdy for all t ≥ 1, this means that all future selves of group dy
strictly prefer state y over state s or any state below. Thus, we haveWdy (y, y, y, . . .) > Wdy (s), and

therefore Wdy (y, y, y, . . .) > Wdy (x) = Wdy (x, x, x, . . .). Consequently, using an argument similar

to above, we can prove that for some equilibrium σ′ under M ′, y is stable, as in that case group dy
would get a higher continuation utility than if they deviated to x or s or a state below s. But this

reduces this case to the previous one, and we can again get to a contradiction.

The cases where Φ′ (z) = z or there is some s > z with s ∈ Φ′ (z) are considered similarly and

lead to contradictions. This proves that for each equilibrium underM ′, x is asymptotically stable. �

Proof of Theorem 8. Suppose that b(∞)
dx
≤ bdx (the opposite case is analogous). Then we can follow

an argument similar to one in the proof of Theorem 7 to show that state y = x−1 is stable in all equi-

libria under both M and M ′, which implies that x is not asymptotically stable for any equilibrium.

Suppose that democracy is not stable for any equilibrium under M . Under matrix M , restrict
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transitions as follows: let a ∈ Fs if either s < x or a ≥ x (i.e., transitions from x to the left are forbid-

den). Then there is an equilibrium σ̃ with transition mapping Q̃. Given the restriction on transitions,

it must be that Φ̃x ≥ x, and then Lemma B1 implies that Φ̃x = {x}. In addition, as before, it must
be that Φ̃y = {y}, so y is stable. Let us now lift the restriction on transitions; by Lemma A5, either
there is an equilibrium under M with transition mapping Q̃, or group dx would be better off if the

society transited to y instead of staying in x. In the first case, however, we would get a contradiction

to the assertion that x is not stable under any equilibrium underM . In the second case, since social

mobility is faster underM ′ than underM , we get that there cannot be an equilibrium underM ′ such

that both x and y are stable, since in such equilibrium dx would be better off if the society transited

to y instead of staying in x, which would contradict Part 2 of Theorem 1. Since, as we proved, y is

stable for all equilibria under M ′, it must be that x is unstable for any equilibrium under M ′. �

Proof of Proposition 1. With only two groups affected by social mobility, within-person

monotonicity is automatically satisfied, and the equilibrium is (generically) unique. If γM > γP ,

then members in M prefer to be in democracy, where it rules, at any point in the future, and thus

democracy is stable. Given that, continuation payoffs, starting in democracy, are given by:

VR (d) = AR − b2R + βVR (d) ;

VM (d) = β ((1− θ)VM (d) + θVP (d)) ;

VP (d) = AP − b2P + β

((
1− γM

γP
θ

)
VP (d) + θ

γM
γP

VM (d)

)
.

Thus,

VR (d) =
AR − b2R

1− β ;

VM (d) =
AP − b2P

1− β
βθ

1− β + βθ
(

1 + γM
γP

) ;

VP (d) =
AP − b2P

1− β
1− β + βθ

1− β + βθ
(

1 + γM
γP

) .
So, VR (d) does not depend on d, whereas VM (d) is decreasing and VP (d) is increasing in θ, since

AP − b2P < 0.

Now consider the case γM < γP . Here, the state with the poor in power (denote it l) is stable,

and starting from d, the society can start in d or transition to l, but not to the state where the rich

are in power, r (this follows from Lemma A6). The utility of the players from being in state l is

given by (similarly to previous)

VR (l) = AR − (bR − bP )2 + βVR (l) ;

VM (l) = −b2P + β ((1− θ)VM (l) + θVP (l)) ;

VP (l) = AP + β

((
1− γM

γP
θ

)
VP (l) + θ

γM
γP

VM (l)

)
.
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and thus

VR (l) =
AR − (bR − bP )2

1− β ;

VM (l) =
1

1− β
(1− β)

(
−b2P

)
+ βθ

(
AP − γM

γP
b2P

)
1− β + βθ

(
1 + γM

γP

) ;

VP (l) =
1

1− β
(1− β)AP + βθ

(
AP − γM

γP
b2P

)
1− β + βθ

(
1 + γM

γP

) .

Suppose the probability of transition from d to l equals q = qdl. In that case, the utilities being in

d are given as equations

VR (d) = AR − b2R + β (1− q)VR (d) + βqVR (l) ;

VM (d) = β (1− θ) (1− q)VM (d) + β (1− θ) qVM (l) + βθ (1− q)VP (d) + βθqVP (l) ;

VP (d) = AP − b2P + β

(
1− θγM

γP

)
(1− q)VP (d) + β

(
1− θγM

γP

)
qVP (l)

+βθ
γM
γP

(1− q)VM (d) + βθ
γM
γP

qVM (l) .

One can check that for θ < 1−β
2−
(

1+
γM
γP

)
β
, wM (d) > wM (l) for any q; for θ > 1

2 , wM (d) < wM (l) for

any q, and for θ ∈
[

1−β
2−
(

1+
γM
γP

)
β
, 1

2

]
, there is a unique q ∈ [0, 1] such that wM (d) = wM (l), and this

q corresponds to a unique equilibrium; moreover, q is increasing in θ.

This implies the result for preferences of R, as VR (d) depends on θ only through q, and is

decreasing in q. Consider the middle class M . For θ < 1−β
2−
(

1+
γM
γP

)
β
, q = 0, so d is stable, and

M prefers a smaller θ. For θ ∈
[

1−β
2−
(

1+
γM
γP

)
β
, 1

2

]
, wM (d) = wM (l), or in other words, VM (d) =

VM (l)+b2P ; similarly, for θ >
1
2 , there is an immediate transition from d to l, and VM (d) = VM (l)+b2P

also holds. But VM (l) is decreasing in θ as follows from the formula, and therefore VM (d) is

monotonically decreasing in θ.

Let us now consider P . For θ ≤ 1−β
2−
(

1+
γM
γP

)
β
, q = 0, and for θ ≥ 1

2 , q = 1; in both intervals,

a marginal increase in θ only leads to more social mobility, and the poor are better off. If θ ∈(
1−β

2−
(

1+
γM
γP

)
β
, 1

2

)
, let us rewrite the equation for VM (d) (by collapsing β ((1− θ)VM (l) + θVP (l))

into VM (l) + b2P ) as

VM (d) = β (1− θ) (1− q)VM (d) + βθ (1− q)VP (d) + q
(
VM (l) + b2P

)
.

Now, we can plug in VM (d) = VM (l) + b2P to obtain

VM (l) + b2P = β (1− θ) (1− q)
(
VM (l) + b2P

)
+ βθ (1− q)VP (d) + q

(
VM (l) + b2P

)
;
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rearranging and dividing by 1− q (which is nonzero in the interior of the interval), we get(
VM (l) + b2P

)
(1− β + βθ) = βθVP (d) ,

and thus

VP (d) =
(1− β + βθ)

βθ

(
VM (l) + b2P

)
=

1− β + βθ

βθ

 1

1− β
(1− β)

(
−b2P

)
+ βθ

(
AP − γM

γP
b2P

)
1− β + βθ

(
1 + γM

γP

) + b2P


=

1− β + βθ

(1− β) θ

θAP −
(

1− θ − β + βθ
(

1 + γM
γP

))
b2P

1− β + βθ
(

1 + γM
γP

) .

Differentiating and simplifying, we get

dVP (d)

dθ
=
b2P
θ2 −

β γMγP

(
AP + b2P

)(
1− β + βθ

(
1 + γM

γP

))2 ,

which is positive, since AP + b2P < 0 by assumption. Thus, VP (d) is strictly increasing in θ for all

θ, which completes the proof. �

Proof of Proposition 2. If γM > γR then, as in Theorem 1, democracy is stable for any θ.

Similarly to the proof there, one can easily show that R prefer a lower θ, M prefer a higher θ, and

P are indifferent.

If γM < γR, then let q = qdr be the probability of transition from d to r in each period. Then,

once again as in Theorem 1, there is a unique equilibrium for each θ; moreover, for θ ≤ 1−β
2−
(

1+
γM
γR

)
β
,

q = 0, for θ ∈
[

1−β
2−
(

1+
γM
γR

)
β
, 1

2

]
, q is monotonically increasing from 0 to 1, and for θ ≥ 1

2 , q = 1.

Accordingly, VP (d) is strictly increasing on θ ∈
[

1−β
2−
(

1+
γM
γR

)
β
, 1

2

]
and constant outside of it, and

VM (d) is strictly increasing for all θ (this may be proven analogously to Theorem 1). As for VR (d),

it is strictly decreasing for θ < 1−β
2−
(

1+
γM
γR

)
β
or θ > 1

2 .

To complete the proof, consider VR (d) for θ ∈
[

1−β
2−
(

1+
γM
γR

)
β
, 1

2

]
. Here, VR (d) is given (similarly

to Theorem 1) by

VR (d) =
1− β + βθ

(1− β) θ

θAR −
(

1− θ − β + βθ
(

1 + γM
γR

))
b2R

1− β + βθ
(

1 + γM
γR

) .

Its derivative with respect to θ equals

dVR (d)

dθ
=
b2R
θ2 −

β γMγR

(
AR + b2R

)(
1− β + βθ

(
1 + γM

γR

))2 .
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This expression is different, because AR + b2R > 0, and the sign of this expression is potentially

ambiguous. More precisely, VR (d) locally increasing for

θ <
1− β√

β γMγR

(
AR
b2R

+ 1
)
− β

(
1 + γM

γR

) = θ∗,

and is locally decreasing otherwise.

One can easily check that 1−β
2−
(

1+
γM
γR

)
β
< θ∗ is equivalent to β γMγR

(
AR
b2R

+ 1
)
< 4. If the latter

condition does not hold, then VR (d) is monotonically decreasing on θ ∈
[

1−β
2−
(

1+
γM
γR

)
β
, 1

2

]
, and thus

for all θ; if it holds, there is an interval up to min
(
θ∗, 1

2

)
where VR (d) is increasing. �

Proof of Proposition 3. Consider the case γM > γP . By Theorem 1, M prefer a lower θ and

P prefer a higher θ. However, since γM > γP , any θ > 0 will be defeated in a plurality voting by

θ̂ = 0. Thus, θ̂ = 0 is the unique core element.

Now consider the case γM < γP . Consider θ <
1−β

2−
(

1+
γM
γP

)
β
; such θ will be defeated in a plurality

voting by θ̂ = 1−β
2−
(

1+
γM
γP

)
β
, because R are indifferent, and the more numerous of the remaining

groups, P , prefers θ′. If θ > 1−β
2−
(

1+
γM
γP

)
β
, then it will again be defeated by θ̂ = 1−β

2−
(

1+
γM
γP

)
β
, because

R and M both prefer a slower social mobility on this interval, and together they constitute a

majority. Thus, θ̂ = 1−β
2−
(

1+
γM
γP

)
β
is the unique core element. �

Proof of Proposition 4. Consider the case γM > γR. By Theorem 2, R prefer a lower θ and M

prefer a higher θ. However, since γM > γR, all θ, except for the maximum value, will be defeated

in a plurality voting. Thus, θ̂ is the maximal admissible value of θ; in our case, Assumption 1 is

satisfied whenever θ ≤ 1
1+

γM
γR

, so θ̂ = 1
1+

γM
γR

.

Now consider the case γM < γR. Here, consider the following possibilities. First, if

β γMγR

(
AR
b2R

+ 1
)
≥ 4, then the utility of R is monotonically decreasing in θ. Thus, any θ > 0 will

be defeated, in a plurality voting, by θ̂ = 0 (M would favor θ > 0, but R, who are more numerous,

would vote for θ̂, and sometimes they would be joined by P ). Thus, θ̂ = 0 is the unique core

element in this case.

More generally, it is easy to see that given the conflict of interest between M and P , θ̂ will

equal the value that maximizes VR (d). There are two candidate values for this value of θ: 0 and

min
(
θ∗, 1

2

)
. Notice that 1

1+
γM
γR

> 1
2 in this case, so this value is necessarily admissible.

Compute first the values of VR (d) at θ = 0 and θ = 1
2 ; we have

V θ=0
R (d) =

AR − b2R
1− β ,

V
θ= 1

2
R (d) =

2− β
1− β

(
AR − b2R

)
+ βb2R

(
1− γM

γR

)
2− β

(
1− γM

γR

) .
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We have V
θ= 1

2
R (d) > V θ=0

R (d) if and only if (2− β)
(
γR
γM
− 1
)
>
(
AR
b2R
− 1
)
. On the other hand,

θ∗ < 1
2 if and only if

(
2−β+β

γM
γR

)2
β
γM
γR

<
(
AR
b2R

+ 1
)
. Let us show that θ∗ < 1

2 cannot hold if

(2− β)
(
γR
γM
− 1
)
>
(
AR
b2R
− 1
)
. Indeed, if this is not the case, we must have

(2− β)

(
γR
γM
− 1

)
+ 2 >

AR
b2R

+ 1 >

(
2− β + β γMγR

)2

β γMγR
.

Simplifying, we would get
(

2− 2β + β γMγR

)(
2− β + β γMγR

)
< 0, which is impossible. Therefore,

if (2− β)
(
γR
γM
− 1
)
>
(
AR
b2R
− 1
)
, then V

θ= 1
2

R (d) maximizes V θ
R (d) for all θ, and is thus the unique

core element.

Consider the case (2− β)
(
γR
γM
− 1
)
<
(
AR
b2R
− 1
)
. Here, we may get a core element other than

0 only if θ∗ < 1
2 and V

θ=θ∗
R (d) > V θ=0

R (d). We have, after simplification,

V θ=θ∗
R (d) =

1− β + βθ∗

(1− β) θ∗

θ∗AR −
(

1− θ∗ − β + βθ∗
(

1 + γM
γR

))
b2R

1− β + βθ∗
(

1 + γM
γR

)
=

(
1

θ∗
+

β

1− β

) AR + b2R
1−β
θ∗ + β

(
1 + γM

γR

) − b2R


=
AR +

(
1 + γM

γR

)
b2R − 2

√
β γMγR

(
AR + b2R

)
bR

1− β .

Then V θ=θ∗
R (d) exceeds V θ=0

R (d) if and only if

(
2+

γM
γR

)2
4β

γM
γR

>
(
AR
b2R

+ 1
)
. However, this is incompatible

with θ∗ < 1
2 . Indeed, if both were true at the same time, we would have(

2 + γM
γR

)2

4β γMγR
>

(
AR
b2R

+ 1

)
>

(
2− β + β γMγR

)2

β γMγR
,

which, after simplification, implies (2β − 1)
(

1− γM
γR

)
> 1. But this is impossible, which means

that V θ=θ∗
R (d) > V θ=0

R (d) only if θ∗ > 1
2 . Consequently, if (2− β)

(
γR
γM
− 1
)
<
(
AR
b2R
− 1
)
, then the

utility of R is maximized for θ = 0. Consequently, θ̂ = 0 is the unique core element in this case. �

B3 Additional Examples

In this part of Appendix B we provide three additional examples.

Example B2 (Multiple equilibria) There are five groups with political bliss points b1,2,3,4,5 =

−21
10 ,−1, 0, 1, 21

10 (there would be two equilibria even if the extreme political bliss points are ±2
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rather than ±2.1, but this would be a knife-edge case). All Ai = 0, discount factor β = 1
2 , and the

reshuffl ing matrix M is given by

M =


3
4

1
4 0 0 0

1
4

1
2

1
4 0 0

0 1
4

1
4

1
4

1
4

0 0 1
4

1
2

1
4

0 0 1
4

1
4

1
2

 .
One can show that the following two mappings, φ1 (1, 2, 3, 4, 5) = (1, 2, 3, 4, 4) and

φ2 (1, 2, 3, 4, 5) = (1, 2, 4, 4, 4), form an equilibrium. To see why, consider the incentives of a

member of group 3. Today (in period 1), his political bliss point is 0. The next day, he will have

political bliss points −1, 0, 1, 21
10 with equal probabilities. For quadratic utility functions, it is the

average that matters, and his expected political bliss point equals 21
40 . Since

21
40 is closer to b4 = 1

than to b3 = 0, when players only care about the next period, an individual of group 3 would

choose φ (3) = 4. For a more patient individual, the situation is more complicated. In period 3,

his expected political bliss point would equal 73
160 < 1

2 , and it would continue to decrease in the

subsequent periods, monotonically converging to zero. Thus, ideally, he would prefer state 4 in

period 2 and state 3 starting from period 3 on. But this is not feasible: once the society reaches

state 4, it will stay there forever, as the decision-makers there are not willing to move to state 3, as

one can easily show (more precisely, they would prefer to remain in state 4 for periods 3 through 8

and move to state 3 after that, but given the discount factor, this makes them willing to stay in 4

rather than move to 3). Consequently, he needs to decide whether to stay in 3 or move to 4 taking

into account the fact that 4, would be an absorbing state in equilibrium.

This decision is ultimately made by taking the decisions of future members of group 3 into

account. If they would opt to stay in state 3, then in period 1 the effective choice is between

staying in state 3 forever or moving permanently to state 4. In this case, current members of group

3 would prefer to stay, even if their short-term incentives are different. However, if future members

of group 3 would move to state 4, then staying in state 3 is for one period only (period 2), and it

so happens that this is the only period where members of group 3 would actually prefer to be in

state 4. Consequently, the best response today is to move to state 4 immediately. As a result, both

φ1 and φ2 are equilibria (verifying that other groups act as prescribed is straightforward).

One can also verify that equilibrium φ1 is preferred to φ2 by individuals who start in groups

1, 2, 3, and the opposite is true for those in groups 4 and 5. In other words, today’s decision-makers

(group 3) are in favor of φ1. Given that the decision is made by a representative agent, one

could wonder what makes φ2 an equilibrium. One way of interpreting equilibrium mapping φ2 is

coordination failure, but not by individuals living in one period, but rather by members of group 3

from different periods. At their respective time, they would all be better off staying in 3. However,

if future decision-makers in state 3 move to 4, then it is a best response to do so immediately. (The

problem does not disappear if we truncate the future, i.e., consider a finite number of periods:

then in the penultimate period, members of group 3 would move to 4, and this would ensure the
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survival of the equilibrium corresponding to φ2).

As always, when there are two equilibria, there is also a third one, where starting in state 3,

group 3 decides to stay with probability α ≈ 0.5667 and move to state 4 with probability 1− α.

Example B3 (Mixing between noncontiguous states) There are five groups; the weights of

the groups are 3
100 ,

1
100 ,

6
100 ,

50
100 ,

40
100 , and their political bliss points are b = (0, 0.9, 1, 2, 30)′, respec-

tively. All Ai = 0, and the social mobility matrix is given by

M =


70
100

10
100

20
100 0 0

30
100

10
100

60
100 0 0

10
100

10
100

30
100

30
100

20
100

0 0 6
100

54
100

40
100

0 0 0 53
100

47
100

 .
Suppose that the discount factor β = 0.5.

The unique equilibrium in the game has the following transition mapping: φ (2) = 3, φ (3, 4, 5) =

4, and from state 1, the society moves to state 3 with probability z ≈ 0.896 and stays in state 1

with the complementary probability 1− z ≈ 0.104.

The intuition for why the society does not find it even better to transit to state 2 is the following.

The transition matrix is such that individuals from group 1 prefer the society to stay in 1 tomorrow,

and be in state 4 thereafter. They know that from states 3, 4, 5 there will be an immediate transition

to 4, therefore, since staying in 1 forever is a bad idea in the long run, moving to state 3 is a reasonable

compromise. On the other hand, if future members of group 1 are suffi ciently likely to move to state

3, then the current ones would rather prefer to spend an extra period in state 1, which would lead

to mixing between states 1 and 3. This mixing is a compromise between the desires to spend an

extra period in state 1 and to reach state 4 sooner rather than later.

It would seem that moving to state 2, rather than mixing between states 1 and 3, is a rea-

sonable middle ground, enabling the accomplishment of both goals. It turns out, however, that it

accomplishes neither. Moving to state 2 does not allow members of group 1 to benefit from being

in state 1 for an extra period. At the same time, since from state 2 the society moves to state 3

rather than 4, going to state 2 does not make state 4 any closer. The parameter values, where state

2 is “unimportant”(the group which rules there is small, and its bliss policy is very close to that

in state 3) make sure that the immediate utility of members of group 1 from moving to state 2 is

only marginally better than that from moving to state 3, but it delays transition to state 4. As a

result, the path initiated by moving to state 2 runs in-between the corresponding paths for staying

at 1 and moving to 3, but in the important few periods the payoff is closer to the path that yields a

lower payoff in that period. As a result, in equilibrium, the mixing is between staying and moving

to a non-neighboring state, even though all utility functions are concave and even quadratic.

Example B4 (Nonconvergence to long run ideal policy and slippery slope) There are four

groups, with weights 1
10 ,

2
5 ,

1
10 ,

2
5 , and their political bliss points are b = (−5, 0, 1, 6)′, respectively. All
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Ai = 0, and the social mobility matrix is given by

M =


1
3

2
3 0 0

1
6

5
6 0 0

0 0 1
3

2
3

0 0 1
6

5
6

 .
Suppose, however, that there are only three states: with the first, third, and fourth group ruling (so

there is no state where policy 0 is implemented).

Notice that Assumption 2 does not hold in this example: in the long run, the ideal policy of

individuals from group 1 is
1
10
×(−5)+ 2

5
×0

1
10

+ 2
5

= −1, and the closest policy that can be implemented in

some state is 1, which would happen if group 3 rules. However, individuals from group 1 can never

move to group 3.

Consider any β ∈ (0, 1). Then the state where group 4 rules is stable, whereas from the state

where group 3 rules, there will be an immediate transition to the state where group 4 rules. Consider

the problem of group 1 in the state where it makes decisions. Its expected ideal point in the next

period is −5
3 , in the following period it is −

10
9 , etc, converging to −1; which implies that all future

selves prefer the state where group 3 rules. At the same time, they know that a transition to that

state would put group 4 in power in the following period, which they clearly dislike. Thus, if they

are suffi ciently forward-looking (namely, if β > 0.103), then they would prefer to stay in the same

state where group 1 chooses policy, so this state is stable.

Therefore, this serves as a counterexample both to Theorem 2 Part 2 (since from state 1 there

is no convergence to the state that the future selves prefer, even if β is close to 1), and to Theorem

6 (since state 1 is stable, but very distant future selves would prefer that the society always stayed

in the state where group 3 is in charge.

B4 Conditions for mixed strategies

Our next results clarify the conditions under which we should see equilibria in mixed strategies.

Consider first the following definition.

Definition 3 We say that social mobility is slow if the preferred state of each individual’s today’s

and tomorrow’s selves coincide. More formally, this property holds if for all states s,

bds ∈ arg min
z∈S

∣∣∣b(1)
ds
− bdz

∣∣∣ .
This property is guaranteed to hold, for example, if M is suffi ciently close to diagonal.

Theorem B1 The following is true for any M , any b and A.

(i) There is β0 > 0 such that for any 0 < β < β0. Then there is an equilibrium which involves

pure transitions only and, generically, this is true for all equilibria;

(ii) Suppose that social mobility is slow, but in at least one state s ∈ S, bds /∈
arg minz∈S

∣∣∣b(∞)
ds
− bdz

∣∣∣ (this is guaranteed to hold for generic parameter values, provided that there
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are at least two states). Then there is β1 < 1 such that for any β1 < β < 1, the equilibrium mapping

involves mixing.

Proof of Theorem B1. To establish (i), let us take generic parameter values, in the sense

of Part 4 of Theorem 1. Notice that for such parameter values, for every x ∈ S, the state

arg minz∈S

∣∣∣bdz − b(1)
dx

∣∣∣ is a singleton. Thus, by Theorem 2, Part 1, the transition mapping is uniquely
defined and involves pure transitions only. Now, to show that there is such equilibrium for non-

generic parameter values, we can take a converging sequence of generic parameter values and use

upper-hemicontinuity of equilibria.

To establish (ii), suppose not. Then there is a sequence of β, {βi} converging to 1 such that for

each β there is an equilibrium with deterministic transition mapping. Since there is only a finite

number of such mappings, we can take a subsequence
{
βik
}
for which there are equilibria with the

same deterministic transition mapping. Denote this mapping by φ : S → S.

If φ (s) = s for all s, then take state x that satisfies bdx /∈ arg minz∈S

∣∣∣b(∞)
dx
− bdz

∣∣∣ (i.e., existence
of such a state is assumed). For β high enough, group dx would be better off deviating and moving

to a state y that maximizes arg minz∈S

∣∣∣b(∞)
dx
− bdz

∣∣∣, which contradicts that such φ occurs in an
equilibrium for arbitrarily high β. Now suppose that φ (s) 6= s for some s. Monotonicity of φ

implies that there are x and y such that |x− y| = 1 and such that φ (x) = φ (y) = y. In this case,

however, the decision-makers at x, dx, would prefer to deviate and stay in x for an extra period.

This contradiction proves the statement of the theorem.

Finally, let us prove that existence of a state with bds /∈ arg minz∈S

∣∣∣b(∞)
ds
− bdz

∣∣∣ holds for generic
parameter values. Indeed, generically, all elements of M are positive, and therefore b(∞)

dx
= b

(∞)
dy

for

all x, y ∈ S. Denote this value by b(∞); notice that the only case where b(∞) ∈ arg minz∈S

∣∣∣b(∞)
ds
− bdz

∣∣∣
for every s ∈ S is where S consists of two elements (say x and y), and b(∞) = 1

2

(
bdx + bdy

)
. This

however, is nongeneric, establishing the result. �

One can also prove that for any fixed β, if M is suffi ciently close to identity matrix then

the equilibrium is in pure strategies. Interestingly, with a finite number of periods, there would

(generically) only be equilibria in pure strategies. A proof is available upon request.

B5 Conditions for monotonicity of MPE

We first provide an example of symmetric nonmonotone MPE.

Example B5 (Nonmonotone equilibrium) There are four groups, with identical weights. Their

political bliss points are b = (−1, 0, 1, 40)′, respectively. All Ai = 0, and the social mobility matrix

is given by

M =


1
2

1
2 0 0

3
10

3
10

2
5 0

1
5

1
5

2
5

1
5

0 0 1
5

4
5

 .
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Furthermore, suppose that there are only two states: in state 1, the leftmost group (with bliss point

−1) is ruling, and in state 2, the second group (with bliss point 0) is ruling.

This example with only two states is deliberately simple. For any β ∈ (0, 1) it admits the

monotone equilibrium φ (1) = φ (2) = 2. (Members are group 1 are indifferent between staying at 1

and moving to 2, but staying at 1 with a positive probability is not an equilibrium, since then they

would strictly prefer to move to 2 because of a nonzero chance to stay in 1 in subsequent periods.)

This is the only monotone equilibrium.

However, there is also a nonmonotone equilibrium, ψ with ψ (1) = 2 and ψ (2) = 1, for β > β∗ ≈
0.2174. It works as follows. Expecting that future decision-makers would alternate between states 1

and 2, the current decision-makers, at both states 1 and 2, effectively choose between the following

two paths: 1, 2, 1, 2, 1, 2, . . ., and 2, 1, 2, 1, 2, 1, . . .. For β > β∗, the immediate considerations are not

too important, but what is important is when members of the group get a chance to move to the

group with radical preferences (group 4); strategically, members of either of the two groups 1 and 2

would want to be in state 2 at the time of first encounter. For members of group 2, this encounter

happens in two periods, hence they prefer the path 1, 2, 1, 2, 1, 2, . . . to 2, 1, 2, 1, 2, 1, . . . and are thus

willing to move to state 1, contrary to their immediate preferences. On the other hand, members

of group 1 prefer the latter path, which reinforces their incentives to move to state 2. As a result,

neither group wants to deviate, and mapping ψ may arise in equilibrium.

It should be noted that in this example, Assumption 3 (within-person monotonicity)is satisfied:

the expected bliss points of current members of groups 1, 2, and 3 monotonically converge upwards

to b(∞) = 10, and the expected bliss points of current members of group 4 monotonically converge

downwards to this value.

The following theorem provides suffi cient conditions for when all symmetric MPE are monotone

in the sense of Definition 1.

Theorem B2 Every symmetric MPE is monotone for generic parameter values if either of the

following conditions holds:

(i) The discount factor β is suffi ciently low, provided that for any states s and x 6= y;

(ii) There is suffi ciently little social mobility, in the sense that the matrix M is suffi ciently close

to the identity matrix.

Proof of Theorem B2. To establish (i), notice that if β is low enough, then in any equilibrium

σ, {Wj (x)}x∈Sj∈G satisfies strict increasing differences. Thus, the result of Part 2 of Theorem 1 holds,

and in any state s, the y ∈ Φx implies that y ∈ arg maxz∈SWdx (z).

Suppose, to obtain a contradiction, that there is a nonmonotone equilibrium. Then for some

states x, y, a, b ∈ S such that x < y and a > b, we have a ∈ Φx, b ∈ Φb. This means that

a ∈ arg maxs∈SWdx (s) and b ∈ arg maxs∈SWdy (s), in particular, this implies Wdx (a) ≥ Wdx (b)
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and Wdy (b) ≥Wdy (a). Note that we have∣∣∣∣∣Wj (a)−Wj (b)−
∑
k∈G

µj,k (uk (a)− uk (b))

∣∣∣∣∣ ≤ β

1− β 2Ū .

Taking j = dx, this implies that
∑

k∈G µdxk (uk (a)− uk (b)) cannot be negative, (other-

wise the inequality would not hold for β small enough, and taking j = dy, we get that∑
k∈G µdyk (uk (a)− uk (b)) cannot be positive. Since bda > bdb , we have b

(1)
dx
≥ bda+bdb

2 ≥ b
(1)
dy
.

However, by Assumption 1, x < y implies b(1)
dx
≤ b

(1)
dy
, consequently, b(1)

dx
=

bda+bdb
2 = b

(1)
dy
. And yet,

this equality does not hold for generic parameter values (in the sense of Part 4 of Theorem 1).

To establish (ii), fix β. Suppose that the statement is not true, then there are states x, y, a, b ∈ S
such that x < y and a > b, and we have a ∈ Φx, b ∈ Φb for equilibria for matrices M arbitrarily

close to unity matrix. Since we can always choose a sequence of matrices {Mi} that converges
to unit matrix such that corresponding equilibria matrices {Qi} also converge to some Q (not

necessarily satisfying the conditions qxa > 0, qyb > 0), we find that under M equal to unity

matrix, there is an equilibrium where decision-makers in x (group dx) weakly prefers transition

to state a to transition to state b, and group dy weakly prefer transition to state b. If matrix

Q has monotone transitions, then {Wj (x)}x∈Sj∈G satisfies strict increasing differences by Lemma

A2, and thus a ∈ arg maxs∈SWdx (s) and b ∈ arg maxs∈SWdy (s) cannot hold together, which

is a contradiction. If matrix Q does not satisfy monotone transitions, then one can easily get a

contradiction as in Theorem 7 and 8 of Acemoglu, Egorov, and Sonin (2015); indeed, under M ,

there is no social mobility, and the argument in that paper straightforwardly generalizes the case

of nondeterministic transitions (details available upon request). �

B6 Some results on social mobility matrices

We first formally state the result that if a social mobility matrix M satisfies (2) and (3), then there

is a probability distribution over permutations of individuals that induces transition probabilities

given by matrix M . In other words, any such matrix M is implementable, even with a finite

number of individuals.

Lemma B2 (Corollary of Birkhoff -von Neumann Theorem) If M is a g × g matrix that
satisfies (2) and (3), then there exist n! nonnegative coeffi cients {απ}π∈Sn that sum to 1 such that

for any j, k ∈ N ,
µgjgk =

∑
π∈Sn:π(j)∈gk

απ, (B2)

where gi is the group containing individual i.

Proof. Consider n×n matrix M̃ , with rows and columns numbered by individuals, and defined by

µ̃jk =
1

ngk
µjk;
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in other words, transition matrix M̃ postulates that individual j has an equal chance of taking the

place of any individual from group k. Now, (2) implies
∑n

k=1 µ̃jk = 1 for all j, and (2) implies∑n
j=1 µ̃jk = 1; consequently, M̃ is a doubly stochastic matrix. By Birkhoff-von Neumann Theorem

(see, e.g., Theorem A2 in Marshall et al., 2011), M̃ lies in the convex hull of permutation matrices

{Pπ}π∈Sn . This means that M̃ may be represented as a convex combination of these matrices:

M̃ =
∑

π∈Sn
απPπ.

This implies that µ̃jk =
∑

π∈Sn:π(j)=k απ for any j, k ∈ N . Since µ̃jk = µ̃jl for any k, l such that

gk = gl, we have ngk µ̃jk =
∑

π∈Sn:π(j)∈gk απ, which immediately implies (B2). �

The next example illustrates that some matrices of social mobility may have multiple represen-

tations as a sum of permutation matrices.

Example B6 (Multiple representations of a mobility matrix as lottery over permuta-

tions) For a given A, the distribution µ such that A = Ω (µ) need not be unique. E.g., take n = 3

and

A =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .
It may be represented as

A =
1

3

1 0 0
0 1 0
0 0 1

+
1

3

0 1 0
0 0 1
1 0 0

+
1

3

0 0 1
1 0 0
0 1 0

 ,
which corresponds to three equally likely permutations id, (123) and (132), and

A =
1

3

0 0 1
0 1 0
1 0 0

+
1

3

0 1 0
1 0 0
0 0 1

+
1

3

1 0 0
0 0 1
0 1 0

 ,
which corresponds to three equally likely permutations (13), (12), (23).

Note that if a matrix satisfies conditions (2) and (3), then it takes the form of a block-diagonal

matrix consisting of one or more blocks {Kx}. Each Kx is a connected block determining the extent

of social mobility. (Assumption 1 requires that the blocks are connected.)

Lemma B3 (Characterization of matrices satisfying Assumption 3) Suppose a m × m

matrix M satisfies all the assumptions for all b. Then it satisfies within-person monotonicity if and

only if it has the following structure: For each component Kx, corresponding to groups Hlx , . . . ,Hrx,

there is a number κx ∈ [0, 1], such that the transition probabilities for all groups except for the two

extreme ones, i.e., for lx < j < ly, satisfy

µjk = κx
nk∑ly
i=lx

ni
+ (1− κx)1j=k. (B3)
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Proof. Suffi ciency. Straightforward.

Necessity. Take any group Hj such that lx < j < ly. Let us show that for any k1, k2 6= j, the

probabilities µjk1 and µjk2 are proportional to the sizes of the groups: µjk1nk2 = µjk2nk1 . Suppose,

to obtain a contradiction, the opposite, i.e., for some k1 and k2 this is not true. Without loss

of generality, we may assume k1 < j < k2, and among such pairs, k2 − k1 is the maximal. For

such k2 and k1, it is also true that
(∑k1

i=lx
µji

)(∑ly
z=k2

nz

)
6=
(∑ly

i=k2
µji

)(∑k1
z=lx

nz

)
(denote the

difference right-hand side and left-hand side by Y ).

Consider the following vector bε for each ε > 0:

(bε)i =


−
∑ly

z=k2
nz + ε (i− j) if lx ≤ i ≤ k1

ε (i− j) if k1 < i < k2∑k1
z=lx

nz + ε (i− j) if k2 ≤ i ≤ ly

(outside of Kx, bi are defined arbitrarily, subject to monotonicity). We have (bε)j = 0 for every

ε. If we consider the (Mbε)j , then as ε → 0, we have (Mbε)j → Y 6= 0. Take δ1 to be such that∣∣∣(Mbε)j∣∣∣ > |Y |
2 for ε ≤ δ1. Now, observe that the sequence M z converges, as z → ∞, to a matrix

M∞ such that its elements satisfy

µ∞jk =
nk∑ly
i=lx

ni
.

This means that as ε → 0, we have (M∞bε)j → −
(∑k1

k=lx
nk∑ly

i=lx
ni

)(∑ly
z=k2

nz

)
+(∑ly

z=k2
nk∑ly

i=lx
ni

)(∑k1
z=lx

nz

)
= 0. Thus, there is δ2 such that

∣∣∣(M∞bε)j∣∣∣ < |Y |
2 for ε ≤ δ2. Con-

sequently, for ε = max (δ1, δ2), we have 0 = (bε)j <
∣∣∣(M∞bε)j∣∣∣ < |Y |

2 <
∣∣∣(Mbε)j∣∣∣. Since all

inequalities are strict, there is h : 1 < h < ∞ such that this inequality holds if M∞ is replaced by

Mh. This implies that the subsequence (bε)j , (Mb
ε)j ,

(
Mhbε

)
j
is not monotone, a contradiction.

We have thus proved that µjk1nk2 = µjk2nk1 for all k1, k2 6= j, and thus there is κx = κx,j such

that µjk are given by (B3). The fact that these numbers are the same for each j : lx < j < ly follows

from Assumption 1 that M is assumed to satisfy. Indeed, if κx,j1 < κx,j2 for j1 < j2, we would have

µj1lx < µj2lx , and thus (4) would be violated for q = lx; similarly, if κx,j1 > κx,j2 for j1 < j2, then

µj1ly > µj2ly , and thus (4) would be violated for q = ly − 1. �

Notice that Lemma B3 does not require the extreme groups in a given class to conform to

the same formula given by (B3). For example, the following matrices satisfy (2), (3), as well as

monotonicity across and within individuals:

2/3 1/3 0
1/3 1/3 1/3
0 1/3 2/3

 ,


3/5 2/5 0 0
1/5 2/5 1/5 2/5
1/5 1/5 2/5 1/5
0 0 2/5 3/5

 .
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